Efficacy of Vegetative Environmental Buffers to Mitigate Emissions from Tunnel-Ventilated Poultry Houses

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Poultry (Broiler and Turkey)
Use Area: Animal Housing
Technology Category: Environmental Barriers
Air Mitigated Pollutants: Dust, Ammonia, Odor

System Summary

Emissions of dust, gases and odor from poultry facilities pose major challenges for the poultry industry worldwide. Cost-effective technologies to abate emissions from modern tunnel-ventilated poultry houses are limited. In 2002 a three-row planting of trees was installed opposite two, 1.2 meter (4 ft) diameter tunnel fans to evaluate vegetative environmental buffers (VEB) as a means of mitigating emissions from the poultry house. The first row, 9.1 meters (30 ft) from the fans was 4.8 meter (16 ft) high bald cypress, followed by 4.3 meter (14 ft) high Leyland cypress and the outer most row of 2.4 meter (8 ft) high Eastern red cedar. Over the next six years the efficacy of these trees to reduce total dust, ammonia and odor was determined. Measurements were taken at 1.2 meter (4 ft) height on 47 days during peak fan operation with market-age broilers. The relative change in concentration across this 6.7 meter (22 ft) wide vegetative buffer found the VEB significantly reduced total dust, ammonia and odor by 56%, 54% and 26%, respectively. Meteorological conditions and the type of crop next to the VEB appeared to influence the efficacy of vegetation to reduce odor. Dust and ammonia concentration was influenced by these factors to a lesser degree. This suggests the use of trees as vegetative filters may offer a long-term, cost-effective means of partially abating emissions from houses. The local poultry industry trade association for the Delmarva Peninsula has hired a coordinator to implement tree plantings around farms to help abate emissions and to be proactive in addressing increasing neighbor-relations concerns.

Applicability and Mitigating Mechanism

  • Certain plants have the ability to absorb ammonia and capture particulates
  • Vegetation also acts as a sink for chemical constituents of odor
  • A properly designed windbreak aids in dispersion and dilutions of odors as well as reducing wind speed
  • A VEB planting has multiple goals; abate emissions, improve neighbor-relations, and provide shade and shelter of the house

Limitations

  • Growers need technical assistance on the proper design, implementation and care of VEB that is tailored to the unique features of each operation
  • Retrofitting a farm with VEB to capture emissions from all fans is difficult.
  • Species of tree and proper implementation influences time required for VEB to become effective in reducing emissions
  • VEB is a practical and multi-purpose BMP to partially abate emissions.

 

Cost

Average cost for implementing a VEB on an existing broiler farm is ~$5,500. Cost range from $1,500 for a limited one-row planting to provide a visual screen of the farm, and up to $12,000 for multi-row plantings around the outside perimeter of the poultry houses. There is limited information on design and efficacy of VEB plantings between houses. Locally, cost-share programs have provided support to cover most of the costs associated with implementing this program. Plantings to address neighbor-relations have been a driving factor in VEB establishment. An estimated 1/3 of all poultry farms have established VEB on the Delmarva Peninsula. A VEB is also a requirement for a new house loan from one of the major lending institutions.

Authors

George Malone1, Gary VanWicklen1, Stephan Collier1
1University of Delaware
Point of Contact:
George Malone, malone@udel.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Multi-pollutant Scrubbers for Removal of Ammonia, Odor, and Particulate Matter from Animal House Exhaust Air

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Swine, Poultry
Use Area: Animal Housing
Technology Category: Scrubber
Air Mitigated Pollutants: Ammonia, Odor, Particulate Matter

System Summary

In The Netherlands, Germany and Denmark packed-bed biotrickling filters and acid scrubbers for removal of ammonia from exhaust air of animal houses are off-the-shelf techniques for ammonia removal (70 – 95% average removal). At the moment a new generation of so-called “multi-pollutant scrubbers” is being developed and tested that not only removes ammonia but also aims for significant removal of odor and particulate matter (PM10 and PM2.5) from the air. Recently a 3-year research program has started that monitors and aims to improve the performance of five farm-scale multi-pollutant scrubber from different manufacturers. The preliminary results show that the average ammonia removal is relatively high (83%, n = 7) but that the average removal of odor (40%, n = 8) and particulate matter (PM10: 43%, n = 2; PM2.5: 42%, n = 2) needs to be improved further.

Applicability and Mitigating Mechanism

  • Ammonia scrubbers consist of two types: either acid scrubbers or biotrickling filters
  • Multi-pollutant air scrubbers usually consist of two or more scrubbing stages where subsequent removal of coarse dust, ammonia and odor takes place
  • Scrubber are mainly applied in pig housings with central ventilation ducts; application in poultry housings are scarce because of high dust concentrations
  • Already 10% of all exhaust air from pig houses The Netherlands is treated; this equals a treatment capacity of 79 million m3/hour

Limitations

  • Odor and dust removal is less effective than ammonia removal, at least for now
  • High concentrations of coarse dust result in blockage of packing material and increased energy use (pressure drop)
  • Costs are considered high, but multi-pollutant scrubbers provide an option for large scale livestock operations to remain in operation in areas nearby residential areas and sensitive ecosystems

Cost

Investment and operational cost of scrubbers for newly built production facilities in € / animal space.
Acid Scrubber Biotrickling Filter Multi-pollutant scrubber (3-stage water/acid/biotrickling)
Investment Costs 32.8 43.5 50.3
Operational Costs (year^1):
Depreciation (10%) 2.6 3.4 4.2
Maintenance (3%) 1.5 1.8 2.0
Interest (6%) 0.8 1.0 1.2
Electricity use ((€ 0.11 kWh^-1) 3.3 3.8 3.7
Water use (€ 1.0 m^-3) 0.6 1.7 0.6
Chemical use (€ 0.6 L^-1 H2SO4, 98%) 1.4 n/a 0.7
Water discharge [b 0.6 2.5 1.0
Total operational costs (year^-1) 10.8 14.3 13.5

[a] The investment costs are based on a maximum ventilation capacity of 60 m3 animal place-1 h-1.
[b] Water disposal costs are assumed of € 10/m3 for discharge from acid scrubbing and € 2/m3 for discharge from biotrickling or water scrubbing. For the multi-pollutant scrubber, discharge water from the biotrickling or water scrubbing step is reused in the acid scrubbing step. The systems do not include a denitrification unit which might significantly decrease water discharge costs.
[c] n/a = not applicable.

Authors

Roland W. Melse, Nico W.M. Ogink, Bert J.J. Bosma; Animal Sciences Group, Wageningen University and Research centre, The Netherlands
Point of Contact:
Roland W. Melse, roland.melse@wur.nl

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Significant Odor Reduction from a Highly Efficient Micro-ecosystem based on Biofiltration

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Swine
Use Area: Animal Housing
Technology Category: Biofilter
Air Mitigated Pollutants: Ammonia, Hydrogen Sulfide, Particulate Matter, Odor

System Summary

Odor Cell Technologies LLC manufactures odor filtration technologies that attach to the exhaust ventilation of CAFO’s. These odor cells are approximately 1.2 m (4 feet) square hollow cubes with porous side walls filled with pine bark that vary in thickness depending upon the cfm and actual run-time of each stage of ventilation. Internal and external hydration is provided to the cells by a uniquely designed irrigation system controlled by timers and sensors. Odor cells utilize the principles of physical entrapment, water chemistry and microbial activity to dramatically improve air quality in and around agricultural and industrial facilities. Using the proven odor reducing principles inherent to composting, the organic odorous particles are entrapped, activated with moisture and attacked biologically at the point source. This allows naturally occurring bacteria to break down and cleanse gases and odors commonly found around these facilities. Odor Cell Technologies LLC‘s patented process creates a “micro-ecosystem” that significantly reduces odors and represents an environmentally friendly option to odor control. The successful installation of our technology has occurred on many sites throughout the Midwest.

Applicability and Mitigating Mechanism

  • Captures odorous organic particulate matter commonly produced by CAFO’s
  • Reduces NH3 and H2S concentrations
  • Utilizes an environmentally friendly filtering media, pine bark, that becomes biologically active with controlled hydration intervals
  • Cost efficient, durable, easily installed and maintained with positive aesthetic appeal
  • Ventilation efficiency can be easily monitored through physical inspection and static pressure measurements

You can view this video in full screen by clicking on the icon second from right
Download a copy of this video (15 MB)

Limitations

  • Biofiltration is most effective on organic based odors and particulate matter
  • Media moisture levels need to be maintained between 30% and 65%
  • Static pressure requirements vary from .05 inches of water upon installation to .08 inches of water on a mature system
  • Pine bark may not be available at local retail outlets
  • Substitution of the recommended media may affect odor cell performance

Cost

Odor cell frames are constructed using stainless steel, DurameshTM hex netting, stainless steel tubing, nylon fittings and brass nozzles. These construction materials were chosen for durability and longevity due to the environment they will operate in. The following represents current pricing for the most common odor cells:

  • Standard P-8, $1200 plus $50 initial media fill
  • 5 inch odor cell, $1425 plus $65 initial media fill
  • 10 inch odor cell, $1650 plus $125 initial media fill
  • Porous rock base, approximately $20 per odor cell
  • Standard hydration package (Approximately $360 – timer, valves, control box, fittings , tubing, and hose)

Operational and maintenance costs are minimal. Media usage is approximately 10% per year. Hydration cycles can be controlled by an irrigation timer and rain sensor. A typical 1200 head swine finishing barn with 6 standard pit exhaust fans using all 10 inch odor cells would cost $11,130 upon installation (excluding shipping and labor) and $75 a year in operational expense. Assuming a complete change of media every 5 years, this equates to $.62 per pig space over 20 years or $.23 per pig produced over 20 years (assuming 2.6 turns per year).

Authors

Robert R. & Roger Treloar, Odor Cell Technologies LLC
Point of Contact:
Odor Cell Technologies LLC, odorcell@southslope.net

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Atomization Treatment to Improve Air Quality in a Swine Concentrated Animal Feeding Operation (CAFO)

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Swine
Use Area: Animal Housing
Technology Category: Other Treatment
Air Mitigated Pollutants: Particulate Matter (PM), Viable Bacteria, Ammonia

System Summary

Juergens Environmental Control Systems are designed to reduce particulate matter (PM), viable bacteria and ammonia and utilizes a high pressure atomization solution. Treatment consists of a formulation comprising proprietary proportions of corn oil, citric acid, ethyl alcohol, eucalyptus, vanilla and water. The formulation was developed to reduce airborne PM and ammonia through short- and long-term mechanisms. The short-term mechanisms include oil encapsulation through electrostatic attraction and coagulation. Long-term reductions occur through the suppression of dust re-suspension. Citric acid is added to neutralize gaseous ammonia. Alcohol helps dry the atomized aerosol and serves as an adjuvant so that formulation components are in complete suspension. Vanilla is added providing a deception for the olfactory senses, and eucalyptus for its respiratory medicinal property. Final formulation is atomized for 5 seconds, six times a day at a pressure of 235 psi (1620 kPa) and a rate of 45 mL/m2. The nozzles are located on the ceiling at 5 or 10 foot centers for complete coverage of the treated area and were designed to produce an aerosol 1-10 ímin diameter under conditions of this formulation and pressure.

Applicability and Mitigating Mechanism

  • Atomization treatment is effective at swine housing systems, such as in finishing, breeding and gestation production systems.
  • The oil is in a water formulation that includes alcohol, citric acid, vanilla and eucalyptus to dry and help mix the atomization solution, neutralize gaseous ammonia, and provide a pleasant odor, respectively.
  • The oil formulation is applied under high pressure, yielding micron-sized charged particles that efficiently remove PM through electrostatic attraction and coagulation.

Limitations

  • Atomization treatment is effective at swine housing systems, such as in finishing, breeding and gestation production systems.
  • The oil is in a water formulation that includes alcohol, citric acid, vanilla and eucalyptus to dry and help mix the atomization solution, neutralize gaseous ammonia, and provide a pleasant odor, respectively.
  • The oil formulation is applied under high pressure, yielding micron-sized charged particles that efficiently remove PM through electrostatic attraction and coagulation.

Cost

Field application of the atomization system and solutions are subject to change. The fixed cost of the system for 1000 – 8000-pig finishing operation averages $1.96 – $7.79 per pig per 3 year term (shipping and installation labor not included). The cost of atomization operating averages $ 0.01 per pig per day over one year. The fixed cost of the system for 500-5000-sow operation averages $9.00 – $16.00 per sow per 3 year term (shipping and installation labor not included). The cost of atomization averages $.01 per sow per day over one year.

Authors

Peter E. Juergens1, Gary L. Rapp11Juergens Environmental Control
Point of Contact:
Gary Rapp, garyrapp@westianet.net

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Dust and Ammonia Control in Poultry Production Facilities Using an Electrostatic Space Charge System

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Poultry
Use Area: Animal Housing
Technology Category: Other Treatment
Air Mitigated Pollutants: Particulate Matter, Ammonia

System Summary

Air quality within poultry production housing has been a major concern for years, particularly with regard to poultry health. The search for strategies to reduce particulate matter and ammonia emissions from animal housing has led to considerable interest in the poultry industry for practical systems to reduce these air emissions. An electrostatic space charge system (ESCS) was designed to reduce aerial dust and ammonia concentrations within a commercial broiler production house. A study was conducted within a commercial broiler house to evaluate the effectiveness of an ESCS for reducing dust and ammonia concentrations over a period of seven flocks. Results of this study indicate the ESCS significantly reduced airborne dust by an average of 43 percent and reduced ammonia by an average of 13 percent. Commercial application of this technology within the production house has the potential to improve in-house air quality and reduce emissions. Electrostatic fields have not been shown to produce adverse health effects in animals or humans. No differences in bird activity were observed in the form of decreased water consumption or increased mortality. No adverse effects of the continuous charge were observed in the form of stray voltage or static discharge at the feeder and water lines.

View the video full screen by clicking the icon second from right at the bottom.
Download a copy of this segment

Applicability and Mitigating Mechanism

  • An Electrostatic Space Charge System transfers a strong negative charge to airborne dust particles
  • The negatively charged particles precipitate out of the air to grounded surfaces.
  • Nitrogen compounds attached to the dust will also precipitate out of the air.
  • Application of an electrostatic space charge can be effective in reducing poultry house dust and ammonia concentrations in floor-raised meat-bird housing.
  • The system has the potential for use as an emissions control device exterior to animal housing.

 

Limitations

  • The incidences of static discharge to workers were minimal. The intensity of a discharge from direct contact with an ESCS ionizer was similar to touching a spark plug wire on a gasoline engine.

Cost

The cost of materials and installation of the experimental ESCS unit was approximately $4,000. Power consumption of the entire system was less than 100 watts during operation. It is reasonable to assume that a commercially available product would have a reduced capital outlay and quicker return on investment than the experimental prototype used within this study.

Authors

C.W. Ritz1, B.W. Mitchell2, B.D. Fairchild1, M. Czarick1, J.W. Worley11University of Georgia, 2 USDA Agricultural Research Service
Point of Contact:
Casey W. Ritz, critz@uga.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Water Requirements for Dust Control on Feedlots

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Beef, Dairy
Use Area: Animal Housing
Technology Category: Facility Management
Air Mitigated Pollutants: Dust, Odor

System Summary

Feedlot dust contributes to cattle illness along with potential non-attainment of PM10 emission standards in localized areas of North America. Increasing the surface moisture content decreases the potential for entrainment of PM10 particles during evening cattle activity resulting in improved cattle health and attainment with air quality standard. Individual feedlots vary in capacity, pen density and overall area necessitating educational outreach efforts including one-on-one technology transfer. A computer model was developed to enable feedlot owners to evaluate their particular facilities including the potential water requirements and cost of mitigating dust and other air emissions. The water requirement is estimated based on initial soil moisture, desired final moisture content, surface coverage area, soil wetting depth, sprinkler efficiency and application time. These parameters are used to estimate well capacity, main and branch water pipe size, number of wetting zones based on sprinkler head capacity, application time and nozzle requirements. Pumping requirements are based on application rate, pump efficiency and total head losses. Operational costs are based on an initial investment in the system along with pumping cost. This results in a total cost per head per month based on the fixed and variable cost.

Applicability and Mitigating Mechanism

  • Design sprinkler package for open lot dust control
  • Economic analysis of the dust control system
  • Spreadsheet based model – easy to use
  • Provides quick evaluation of when inputs parameters are varied
  • Estimates daily water requirements per head for dust control

Limitations

  • Results dependent on input parameters
  • Assumes water application is uniform
  • Assumes initial cost of installation of a sprinkler package is known
  • Adequate water availability for dust control

Cost

The cost of dust control on open feedlots ranges from $0.60 to $2.40 per marketed head. The cost of the infrastructure of the sprinkler system or water application equipment is reduced with increases in feedlot capacity or marketed head per year. The fixed cost represents 60 to 80 percent of the annual cost. The variable costs are dependent on the days per year necessary for attainment of PM10 emissions from open feedlots or earthen dry lots commonly found in the High Plains region of the North America.

Authors

Joseph Harner 1, Ronaldo Maghirang1, Edna Razote11Kansas State University
Point of Contact:
Joseph Harner, jharner@ksu.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

The Use of Vegetative Environmental Buffers For Livestock and Poultry Odor Mitigation

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Poultry, Dairy, Beef, Swine
Use Area: Animal Housing and Manure Storage
Technology Category: Vegetative Buffers
Air Mitigated Pollutants: Particulate Matter, Odor, Ammonia

System Summary

Vegetative Environmental Buffers (VEBs) – linear arrangements of trees and shrubs planted near and around livestock/poultry production sites – have been shown to incrementally mitigate odors, particulates, and ammonia through a complex of dynamics. Among the most important dynamics are: 1) enhancement of vertical atmospheric mixing through forced mechanical turbulence – leading to enhanced dilution/dispersion of odor; 2) odor filtration through particulate interception and retention – odor largely travels by way of particulates; capturing particulates also captures odors; 3) odor/particulate fallout due to gravitational forces enhanced by reduced wind speeds; 4) adsorption and absorption of ammonia onto and into the plant – this is due to a chemical affinity that ammonia has to the waxy coating on tree leaves; 5) softening socio-psychological responses to odor due to improved site aesthetics and creating “out of sight, out of mind” dynamics; and 6) improved producer/community relations by using highly visible odor management technology.

Applicability and Mitigating Mechanism

  • As air moves across vegetative surfaces, leaves and other aerial plant surfaces can remove odors, dust, gas, and microbial constituents of airstreams.
  • VEBs can mitigate odors/ particulates from all livestock/poultry species;
  • VEBs are size neutral technology and can be used to mitigate odors/particulates from all sources of odor: buildings, manure storage, and land application.
  • Trees/shrubs are among the most efficient natural filtering structures in a landscape.

Limitations

  • Mitigation effectiveness is highly site specific and will vary considerably from farm to farm.
  • VEBs often require considerable land area and may take up to five years to become physically effective.
  • Care in VEB design must be taken to avoid causing snow deposition, ventilation, and on-farm visibility problems.
  • At best, odor/particulate mitigation will be “incremental” and therefore should be always used with other odor management strategies.

Cost

Costs for VEB systems are highly variable and are site/design specific – but for midsized producers (and larger) VEBs likely amount to just a few cents per animal produced. There are three main categories of expenses associated with VEBs: 1) Site prep costs, 2) tree establishment costs, and 3) long term maintenance costs. It should be noted that the majority (usually in the range of 40-70%) of the total cost is “upfront” and is tied to the cost of the initial planting stock (e.g. older, larger nursery stock can be considerably more expensive than bare-root seedlings but such an investment may “buy time” in VEB establishment). Long term maintenance costs vary depending upon the overall health of the VEB. It should be recognized that there are expenditures that occur regularly throughout the life of a VEB and maintenance is an annual process, however as a VEB system matures the annual maintenance requirements will likely decrease over time.

Authors

John C. Tyndall11Department of Natural Resource Ecology and Management
Point of Contact:
John C. Tyndall, jtyndall@iastate.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Reducing H2S, NH3, PM, & Odor Emissions from Deep-pit Pig Finishing Facilities by Managing Pit Ventilation

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Swine (maybe Dairy and Poultry)
Use Area: Animal Housing
Technology Category: Management
Air Mitigated Pollutants: Odor, Hydrogen Sulfide, Ammonia, Particulates (PM10)

System Summary

A recent study determined that a large majority (75 to 80 %) of the total NH3 and H2S emissions from a 2000-head tunnel-ventilated deep-pit pig-finishing barn for 45 days during August and September 2004 were emitted from the pit exhaust stream even though only 20 to 30 % of the total barn’s ventilation air was being provided by pit fans. This information allows producers with deep-pit facilities to strategically utilize catch and treat emission control technologies, such as biofilters, ONLY on pit fans airstreams that would result in large reductions (>50%) in the emissions of hazardous gases, odor, and particulate matter by treating only a small portion of the total ventilation air (figure 1). Another follow up study found that emissions of certain pollutants, may be reduced slightly (10 to 20%) by simply eliminating pit fans altogether for a deep-pitted pig building.

The phenomenal of a majority of the barn’s airborne pollutants being emitted by pit fans, may also be true for other swine production phases or for even other species (dairy and poultry) housed in deep pit facilities. This would mean that emission reductions of >50 % for certain pollutants are potentially possible when emission control technologies like biofilters are strategically placed on large emitting pit fan sources in deep-pit buildings. If only small reductions (<20%) of certain pollutants are needed, this maybe accomplished by the elimination of pit fans altogether.

Applicability and Mitigating Mechanism

  • Pit Fan(s) airstreams contain a majority of the critical airborne pollutants (NH3, H2S, PM10, odor) from deep-pitted pig buildings
  • If biofilters are strategically used on pit exhaust air, sizable (>50%) emission reductions of some pollutants are possible for either existing or new deep-pit facilities

Limitations

  • Information only available presently for deep-pit pig finishing barns but anticipated similar results for other swine plus dairy and poultry housed in deep-pit buildings
  • Valid for NH3, H2S, odor, and certain PM fractions, not known if greenhouse gases will also be concentrated in the pit fan exhaust air of deep-pit facilities

Cost

There is no additional cost of this “technology” since a well-designed and operating ventilation system is required in any animal facility and especially in a deep-pitted pig building. There actually may be a cost saving if producers decided to install no or only a limited number of pit fans instead of the standard number for the livestock industry which is approximately 20% of the total barn’s ventilation system. A cost savings is often realized since the installation of pit fans is typically more expensive than wall fans plus pit fans have higher maintenance requirements and are more frequently in need of replacement.

Authors

Larry D. Jacobson1, Brian P. Hetchler1,David R. Schmidt11Bioproducts & Biosystems Engineering, University of Minnesota
Point of Contact:
Larry D. Jacobson, jacob007@umn.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.