Improved Recovery of Ammonia From Swine Manure Using Gas-Permeable Membrane Technology and Aeration

Why Study Nitrogen Recovery from Manure?

Significant efforts are required to abate NH3 emissions from livestock operations. In addition, the costs of fertilizers have rapidly increased in recent years, especially nitrogen fertilizer such as anhydrous ammonia which is made from natural gas. Thus, new technologies for abatement of ammonia emissions in livestock operations are being focussed on N recovery. This presentation shows a novel system that uses gas-permeable membranes to capture and recover ammonia from liquid manure, reducing ammonia emissions from livestock operations, and recovering concentrated liquid nitrogen that could be sold as fertilizer.

What Did We Do?

Nitrogen recovery from swine manure was investigated using a new technology that uses gas-permeable membranes at low pressure. The new process includes the passage of gaseous ammonia contained in the liquid manure through a microporous hydrophobic membrane and capture and concentrate with circulating diluted acid on the other side of the membrane.   The membranes can be assembled in modules or manifolds.  Membrane manifolds are submerged in the manure and the ammonia is removed from the liquid before it escapes into the air. The process involves manure pH control to increase ammonium recovery rate that is normally carried out using an alkali chemical. In this study a new strategy was tested to avoid the use of alkali chemicals.  Instead of the chemical, we applied low-rate aeration and nitrification inhibitor to raise the pH and promote ammonia capture by the membrane system.

Diagram of ammonia recovery system using with gas permeable membranes and low-rate aeration

Figure 1. Diagram of ammonia recovery system using with gas permeable membranes and low-rate aeration

What Did We Learn?

Two studies were conducted to recover N from liquid swine manures containing high ammonia concentrations using a USDA patented gas-permeable membrane system. One study used raw liquid manure from the pit under slatted floor of a farrowing sow’s barn in Segovia, Spain.  The second study used liquid swine manure effluent from a covered lagoon digester in North Carolina, USA.  The new strategy that used low-rate aeration and nitrification inhibition worked quite well in both situations. In the first study using raw manure,  the pH increased and the ammonium concentration was almost depleted: it declined from 2270 mg N/L to 20 mg N/ in 18 days. The ammonia that was removed was recovered efficiently in the concentrator tank (99% recovery efficiency).  Using the same membrane manifold without the aeration protocol, the ammonium concentration in the manure decreased at a slower rate from 2330 mg N/L to 790 mg N/L in 18 days. The results obtained were consistent in the second study that used digested swine effluent.  When low-rate aeration and nitrification inhibitor were added to the gas-permeable membrane reactor, ammonium concentration in the digester effluent decreased rapidly, from 3130 mg N/L to 96 mg N/L, in 5 days.  The recovery efficiency was 98%.  This N removal rate was 5 times faster than a control that used the same membrane reactor and conditions but operated without the aeration protocol.  Overall results obtained in this work indicate the low-rate aeration is an economical alternative to chemical addition to increase ammonia availability and the capture of ammonia by gas-permeable membrane systems. This conclusion is supported by the very high removal and recovery efficiencies obtained resulting in an overall recovery of 95 to 98% of the initial ammonia in the manure.

Future Plans

On-farm demonstration studies will be conducted in 2015 in cooperation with Dr. John Classen, North Carolina State University, through an NRCS Conservation Innovation Grant (CIG) “Ammonia recovery from swine wastewater with selective membrane technology”.  A mobile pilot unit will demonstrate recovery of ammonia from liquid manure effluents using the gas-permeable technology in three different manure collection systems: under floor belt system, scraper system, and anaerobic digester.

USDA seeks a commercial partner to develop and market this invention (Systems and Methods for Reducing Ammonia Emissions form Liquid Effluents and for Recovering Ammonia. US Patent Appl. SN 13/164,363 allowed Dec. 19, 2014)  http://www.ars.usda.gov/business/docs.htm?docid=763&page=5

Authors

Matias Vanotti, USDA-ARS, Florence, South Carolina matias.vanotti@ars.usda.gov

Matias B. Vanotti1, Maria C. Garcia-Gonzalez2, Patrick J. Dube1, Ariel A. Szogi1

1 USDA-ARS, Coastal Plains Soil, Water, and Plant Research Center, Florence, SC

2 Agriculture Technological Institute of Castilla and Leon (ITACyL), Valladolid, Spain

Additional Information

“Livestock Waste Management 2.0: Recycling Ammonia Emissions as Fertilizer” published in the November/December 2012 issue of Agricultural Research magazine  http://www.ars.usda.gov/is/AR/archive/nov12/livestock1112.htm

“Recovery of ammonia with gas permeable membranes” research update at USDA-ARS-CPSWPRC website  http://www.ars.usda.gov/Research/docs.htm?docid=22883#ammonia

Vanotti,M.B., Szogi,A.A.  “Systems and Methods for Reducing Ammonia Emissions form Liquid Effluents and for Recovering Ammonia”. US Patent Appl. SN 13/164,363,  filed June 20, 2011, allowed December 19, 2014.  US Patent and Trademark Office, Washington, DC.

Garcia-Gonzalez, M.C., Vanotti, M.B., Szogi, A.A. 2015. “Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration”. Journal of Environmental Management 152:19-26

Acknowledgements

This research was part of USDA-ARS National Program 214 Agricultural and Industrial Byproducts, Research Project 6657-13630-005-00D “Innovative Bioresource Management Technologies for Enhanced Environmental Quality and Value optimization”. Funding by INIA/FEDER Project CC09-072 is gratefully acknowledged.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Ammonia Recovery from Livestock Wastewater with Gas Permeable Membranes

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Study Ammonia Recovery from Livestock Wastewater?

This presentation shows a novel system that uses gas-permeable membranes to capture and recover ammonia from liquid manure, reducing ammonia emissions from livestock operations, and recovering concentrated liquid nitrogen that could be sold as fertilizer.

What Did We Do?

These systems use gas-permeable membranes as components of new processes to capture and recover the ammonia in liquid manures. The new process includes the passage of gaseous ammonia contained in the liquid manure through a microporous hydrophobic membrane and capture and concentration with circulating diluted acid on the other side of the membrane.   The membranes can be assembled in modules or manifolds.  For liquid manure applications, the membrane manifolds are submerged in the liquid and the ammonia is removed from the liquid manure in barn pits or storage tanks and lagoons before it goes into the air.

Cross-sectional diagram of ammonia capture using hydrophobic gas-permeable membrane.  Ammonia gas (NH3) in the liquid manure permeates through hydrophobic membrane walls with micron-sized pores, where it combines with the free protons (H+) in the acid solution to form non-volatile ammonium ions (NH4+).

What Have We Learned?

The concept was successfully tested using concentrated swine manure effluents containing 140 to 1,400 mg/L NH4-N. The use of gas-permeable membranes to remove ammonia from liquid manure was effective, and the rate of N recovery by the gas-permeable membrane system was higher with higher ammonia concentration in the manure.  While ammonia gas passed readily through the membrane pores, the soluble COD compounds did not pass. An average removal rate from 45 to 153 milligrams of ammonia per liter per day was obtained when ammonia concentrations in swine lagoon liquid ranged from 138 to 302 milligrams ammonia per liter.  The rate of ammonia recovery was also increased with increased pH of the wastewater. With a natural pH of 8.3, the rate of N recovery was about 1.2% per hour.  This rate was increased 10 times (to 13% per hour) at pH of 10 after alkali addition.  In another study, we immersed the membrane module into raw liquid manure that had 1,400 milligrams of ammonia per liter, and after 9 days, the total ammonia concentration decreased about 50 percent to 663 mg per liter. The gaseous ammonia in the liquid (or free ammonia) linked to ammonia emissions decreased 95 percent from 114.2 to 5.4 milligrams per liter. The same process was used in 10 consecutive batches of raw swine manure and ended up recovering concentrated nitrogen in a clear solution that contained 53,000 milligrams of ammonia per liter.  The new technology could help change on-farm nitrogen management: Livestock producers could use the technology to help meet air-quality regulations, save fuel, protect the health of livestock and their human caretakers, improve livestock productivity, and recover concentrated liquid nitrogen that can be re-used in agriculture as a valued fertilizer.

Diagram of ammonia recovery system using with gas permeable membranes

Recovery and concentration of ammonia from liquid manure using gas-permeable membrane system. Diagram and pictures show prototype testing, using the same stripping solution with repeated batches of liquid manure.

Future Plans

On-farm demonstration studies will be conducted in 2013-2014 in cooperation with Dr. John Classen, North Carolina State University, through an NRCS Conservation Innovation Grant (CIG) awarded in FY2012 “Ammonia recovery from swine wastewater with selective membrane technology”.  The project will demonstrate recovery of ammonia from liquid manure effluents using the gas-permeable technology in three different manure collection systems: under floor belt system, scraper system, and anaerobic digester.

USDA seeks a commercial partner to develop and market this invention (US Patent Appl. SN 13/164,363)  http://www.ars.usda.gov/business/docs.htm?docid=763&page=5

Authors

Matias Vanotti, USDA-ARS, Florence, South Carolina, matias.vanotti@ars.usda.gov

Matias Vanotti, Ariel Szogi,  Patrick Hunt

USDA-ARS, Coastal Plains Soil, Water, and Plant Research Center, Florence, SC

Additional Information

Livestock Waste Management 2.0: Recycling Ammonia Emissions as Fertilizer published in the November/December 2012 issue of Agricultural Research magazine  http://www.ars.usda.gov/is/AR/archive/nov12/livestock1112.htm

“Recovery of ammonia with gas permeable membranes” research update at USDA-ARS-CPSWPRC website  http://www.ars.usda.gov/Research/docs.htm?docid=22883#ammonia

Vanotti,M.B., Szogi,A.A.  “Systems and Methods for Reducing Ammonia Emissions form Liquid Effluents and for Recovering Ammonia”. US Patent Appl. SN 13/164,363,  filed June 20, 2011.  US Patent and Trademark Office, Washington, DC.

Vanotti, M.B., Szogi, A.A. 2010. “Removal and recovery of ammonia from liquid manure using gas-permeable membranes”. In: Proceedings of the 2010 American Society of Agricultural and Biological Engineers Annual International Meeting, June 20-23, 2010, Pittsburgh, Pennsylvania. 5 p. Paper No. 1008376.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.