Vegetative Environmental Buffers (VEBs) for Mitigating Air Emissions from Livestock Facilities: A Review

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….


Air emissions from livestock facilities are receiving increasing attention because of concerns related to nuisance, health and upcoming air quality regulations. Vegetative buffers have been proposed as a potential cost effective mitigation strategy to reduce dust, odor and other air pollutants from farm and can be an important part of air quality management plan. However, the effectiveness of vegetative buffers in mitigating air emissions seems to be site specific and can be affected by many factors. This study aims to provide a thorough literature review on the performance of vegetative buffers in mitigating air emissions, to investigate critical factors, and to identify research gaps. The results will be used as basis for planning future wind tunnel and field studies. The ultimate objective is to develop general guidance for vegetative buffer design and to demonstrate the variety and effectiveness of vegetative buffers for mitigating air emissions from livestock facilities.

Why Study Trees As a Potential Odor Management Strategy?

Vegetative environmental buffers (VEBs) have been proposed as a mitigation strategy for air emissions from livestock facilities. Survey indicated producers are interested in using VEBs for odor management. But lack of information on performance, cost and technical guidelines are barriers to adoption of VEBs.

What Did We Do?

Review published research on effectiveness of VEBs for mitigating air emissions from livestock facilities.

What Have We Learned?

VEBs have been examined primarily in swine and poultry farms. Iowa, Pennsylvania and Delaware are actively involved in research and implementation of VEBs for livestock farms. VEBs are potential cost effective strategy for reducing dust (by up to 56%), odor (by up to 68%), NH3 (by up to 54%) and H2S (by up to 85%) from farms, although effectiveness and costs are highly variable and depend on site specific design. Most effective reduction occurs just beyond the VEBs. Wind tunnel simulation on barriers at roadside showed that percentage reduction of pollutants decreasing with downwind distance, and they are generally below 50% beyond 15 barrier height.

Mitigation Mechanisms of VEBs

Future Plans

Measure the concentrations of multiple air emission constituents at various distance from a swine facility with and without the presence of a VEB under various weather conditions; determine the effectiveness of the VEB under various design parameters (height and depth) and evaluate how height and depth of the VEB will affect the mitigation effectiveness; develop design suggestions and best management procedures to utilize a VEB in order to maximize effectiveness with limited costs. 


Zifei Liu, Assistant Professor, Kansas State University.

Ronaldo Maghirang, Pat Murphy, Kansas State University

Additional Information


The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.