White Meat-Green Farm: Case Study of Brinson Farms

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Comprehensive on-farm resource utilization and renewable energy generation at the farm scale are not new concepts.  However, truly encompassing implementation of these ideals is lacking.  Brinson Farms operates 10 commercial broiler houses.  The farm generates heat for its houses using biomass boilers and litter anaerobic digestion to produce methane.  Solar panels assist in heating process water for the boilers and digester.  Biomass feedstock includes litter as well as municipal yard wastes.  Liquid fertilizer is a product of the digester while residual solids are included in the farm’s composting operation.  The operator has used a futuristic approach to not only attain energy independence for the farm, but also to comprehensively utilize byproducts of production and other local “wastes”, diverting them from local landfills.  Considering the propane cost for a single winter flock has reached $66,000 and the annual electric bill may be $120,000, energy costs very much affect grower profitability.  This approach decreases the uncertainty in energy costs.  Brinson Farms provides a unique look into ensuring long-term farm sustainability in an environmentally friendly way and with a wide-ranging systems approach to management.

Purpose

The purpose of the renewable energy project was to implement an innovative, sustainable solution to manage poultry manure and other organic waste products using anaerobic digestion as well as to demonstrate the ability to effectively and economically reduce dependence on outside utilities.

What Did We Do?

Brinson Farms demonstrates comprehensive utilization of local resources that have historically been viewed as wastes.  These organic materials (broiler litter, yard trimmings, storm damaged trees and waste vegetables) come from both the farm and the community.  Broiler litter and waste vegetables are anaerobically digested to produce methane.  The methane is then used in three ways: 1) to generate electricity for the farm; 2) in boilers to heat water used in the digestion process; and 3) in dual-fuel biomass boilers to heat water for heat exchange in the broiler houses when biomass sources are low. Two other significant products from the digester include liquid fertilizer (approximately 5-2-3) that is sold and residual solids that are incorporated into the farm’s composting facility.  Solar panels assist in heating water for the biomass boilers and the digester. The simple payback period for the on-farm poultry litter digester system is approximately 5 years.

Brinson Farms anaerobic digester complex.

What Have We Learned?

Brinson Farms provides a unique system to ensure long-term farm sustainability in an environmentally beneficial manner. Attributes of the integrated system include: 1) bio-based energy production; 2) reduced utility costs; 3) comprehensive litter utilization; 4) no need to land apply poultry litter; 5) production of high quality, organic liquid fertilizer; 6) production of a marketable soil amendment (compost);  and 7) diverting wastes from landfills.  The farm/community interface is mutually advantageous. The farm uses yard trimmings and trees for energy and as a compost substrate; the community has a free repository to dispose of the biomass, where otherwise it would have to pay landfill fees.

Biomass storage and boiler to heat broiler houses

Future Plans

Future plans include developing economic evaluations for each of the system components so that farmers can choose the renewable energy/value added process(es) that will best fit their local resources as well as short and long term financial plans.

Authors

Dana M. Miles, Chemical Engineer, USDA-ARS Genetics & Precision Agriculture Research Unit, Mississippi State, MS, dana.miles@ars.usda.gov

Additional Information

John Logan: johnlogan1@windstream.net;

Jeff Breeden: jbreeden@egesystems.com;

Eagle Green Energy: http://eaglegreenenergyinc.com/;

Arora, S. 2011. Poultry Manure: The New Frontier for Anaerobic Digestion. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1046769.pdf

Acknowledgements

The assistance of John Logan and Jeff Breeden to effectively describe the Brinson system is greatly appreciated.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Mortality Composting in the Semi-Arid West

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Is Proper Mortality Management Important?

Proper management of animal mortalities has important implications for nutrient management, water quality, animal health, and farm/ranch family and public health.  To best ensure human health and safety, reduce regulatory risks, and protect environmental resources, livestock producers should become familiar with best management practices (BMPs) for dealing with dead animals. Producers should also be aware of state laws related to proper disposal or processing of mortalities. 

Mortality composting is an increasingly popular and viable alternative when compared to other disposal practices because of cost savings, bio-security benefits, and reduced environmental risks.  Static mortality composting differs from traditional composting in both management intervals and carbon to nitrogen ratios.   The objective of this workshop is to provide those who advise livestock producers with the knowledge, tools, and resources to develop a mortality management plan, with specific focus on the static composting option.   

The Rocky Mountain based authors conducted demonstrated research, reviewed pertinent literature, studied USDA-NRCS standards, and documented mortality composting systems already in-use by regional producers. 

Recording of the author’s presenting the workshop
Options for managing dead animals
Principles of mortality composting
Managing animal mortality compost piles
Economics of mortality composting

Curriculum Materials

Data from these activities provided a basis for the following tools:

  1. Decision aid spreadsheet that evaluates the costs of mortality composting against other mortality disposal options (in English and Spanish),
  2. How-to-manual on mortality composting in English and Spanish),
  3. Video illustrating on-the-ground mortality composting
  4. PowerPoint presentation explaining mortality composting principles, methods and resources (in English and Spanish).

Learning Objectives

This 90 minute in-service workshop will provide background and step-by-step considerations for mortality composting, with an emphasis on the practice in the semi-arid environments of the western United States.  However, fundamentals of the workshop will apply to all climates.   To the right, you will find recordings of the authors presenting the workshop using the slides from the curriculum materials.

Presenters

Thomas Bass, Livestock Environment Associate Specialist, Montana State University tmbass@montana.edu. Mr. Bass has been an Extension Specialist in the area of livestock and environmental management for 12 years.  He has been involved in composting research and demonstrations for much of his career. 

Jessica Davis, PhD, Colorado State University.  Dr. Davis is an Extension Specialist and the director of the Institute for Livestock and the Environment, a diverse group of CSU faculty working together to solve problems at the interface of livestock production and environmental management. She is the principal investigator and originator of this SARE project.    

John Deering, MS, Colorado State University.  Mr. Deering, is a regional Extension Specialist in Eastern Colorado.  He is an economist by training with an emphasis on agriculture and business management.  He developed the economic tools and narratives associated with the products of this project.

Michael Fisher, MS, Colorado State Univeristy.  Mr. Fisher is an area Extension Agent, with an emphasis in livestock production, meat science, range management, and overall ranch management.  He is an important conduit between producers, other government agencies, and industry groups in north eastern Colorado.      

Additional Information

This project was funded by the Western Region Sustainable Agriculture Research and Education (SARE) program.

Archive webcast: https://connect.extension.iastate.edu/p93vve55l1f/?launcher=false&fcsContent=true&pbMode=normal

Curriculum Materials

Companion Video: https://www.youtube.com/watch?list=PL62C6899F81B769B7&v=1DwUrOxpTxw&feature=player_detailpage

Manual (eng): http://livestockandenvironment.org/wp-content/uploads/2012/02/CompostingManual-final-webview.pdf

Manual (span): http://livestockandenvironment.org/wp-content/uploads/2011/03/CompostingManual_spanish_web-2.pdf

Ppt: https://extension.colostate.edu/docs/pubs/ag/mortality.pdf

Ppt (span): http://livestockandenvironment.org/wp-content/uploads/2011/03/Mortality-Spanish.pptx

Partial Budget: http://livestockandenvironment.org/wp-content/uploads/2011/03/Partial-Budget-Form-English.xls

Partial Budget (span): http://livestockandenvironment.org/wp-content/uploads/2011/03/Partial-Budget-Form-Spanish.xls

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.