Conservation Practices and Animal Agriculture


Module Home | Importance of Conservation | Conservation Practices in Animal Ag (you are here)

Many conservation practices are available for animal agriculture producers interested in protecting air and water quality, improving soil health or wildlife habitat, and increasing the productivity of animals, pastures, and crops. This module will especially focus on conservation practices impacting water quality with the goal of keeping clean water clean.

Farmers and ranchers can implement conservation practices on their own. They can also seek technical or financial assistance through agencies such as a local Conservation District or USDA Natural Resources Conservation Service (NRCS).

NRCS has developed approximately 160 conservation practice standards at the national level. States have the option of adopting a standard and using the same or more stringent criteria. Farmers should use state-adopted standards whenever available. To find out whether your state has adopted a certain standard, contact your local NRCS office.

Conservation practices relevant to water quality and animal agriculture can be divided into three categories. Clicking the link will take you to a virtual tour website that describes each practice and includes several photos.

Manure
Management

manure storage structure

Land & Pasture Management

stream crossing

Mortality
Management

poultry mortality compost

Conservation Practices Included In Each Virtual Tour

Manure Management

  • Anaerobic Digester (366)
  • Composting Facility (317)
  • Dust Control from Animal Activity on Open Lot Surfaces (Ac.) (375)
  • Feed Management (592)
  • Nutrient Management (590)
  • Roofs and Covers (367)
  • Vegetated Treatment Area (635)
  • Waste Facility Closure (360)
  • Waste Recycling (633)
  • Waste Separation Facility (632)
  • Waste Storage Facility (313)
  • Waste Transfer (634)
  • Waste Treatment (629)
  • Waste Treatment Lagoon (359)

Land & Pasture Management

  • Access Control (472)
  • Cover Crop (340)
  • Critical Area Planting (342)
  • Denitrifying Bioreactor (605)
  • Diversion (362)
  • Fence (382)
  • Filter Strip (393)
  • Grassed Waterway (412)
  • Heavy Use Protection Area (561)
  • Livestock Shelter Structure (576)
  • Prescribed Grazing (528)
  • Riparian Forest Buffer (391)
  • Riparian Herbaceous Cover (390)
  • Saturated Buffer (604)
  • Streambank & Shoreline Protection (580)
  • Stream Crossing (578)
  • Watering Facility (614)

Mortality Management

  • Animal Mortality Facility (316)
  • Emergency Animal Mortality Management (368)

Applying Conservation Practices to Individual Farms

Conservation practices should be implemented on an individual farm basis to ensure they are addressing a natural resource concern and will be effective in the particular farm setting.

Some questions to ask when evaluating whether a conservation practice will be beneficial for an animal agriculture operation:

  • Is the farm a confinement facility or are animals on pasture (or both)?
  • Are confined animals kept under a roof or open lots (or both)?
  • Where are pastured animals housed or fed in the winter?
  • Does the operation include crop land?
  • Are there waterbodies such as streams or ponds on the facility or crop land?
  • How does the farm store or handle manure; as a solid or slurry/liquid?
  • How much manure does the farm produce and where is it currently stored?
  • Are there neighbors nearby? How many and where?
  • Are there environmentally sensitive features on or near the facility? Wells, sinkholes, public parks or public use areas, wildlife, impaired waterbody, or similar features should all be considered.
  • What are the goals of the farmer or rancher? What is important to them and what do they have interest and capacity to implement and manage?

For example, consider these fictional farms. Both have 200 dairy cows and are interested in developing a manure management system. They are both in the same state with similar soil types.

Farm 1: There is a child in college interested in returning to help manage the farm, so future expansion is a strong possibility. The farm has sufficient cropland to use the manure they currently produce as crop fertilizer.

Farm 2: This farm is considering organic production. They do not have much cropland and must export most of their manure to neighboring crop farmers. This farm also has connections to organic crop farmers as well as the nursery and landscape industry.

While both farms have similar characteristics, they have very different goals. Their conservation plans could be very different. Farm 1 is likely to consider an earthen or concrete slurry manure storage structure with the biggest question being how large to make the structure considering a possible expansion in the near future. They are likely to develop a comprehensive nutrient management plan (CNMP) to ensure the cropland base continues to support any future expansion.

Farm 2 may look at manure collection and storage very differently. The cattle may have access to open lots (manure is handled as a solid) or grazing paddocks. Given the off-farm connections and lack of crop land, composting or other ways to generate value-added products may be an option. Marketing manure or exporting it off-farm will be important to this farm’s manure management plans.

Both farms intend to protect natural resources but need to implement different practices to reach their goals.

Previous: Importance of Conservation | Next: (Home) Animal Ag, Manure, and Stewardship

Acknowledgements

These materials were developed by the Livestock and Poultry Environmental Learning Center (LPELC) with funding from the USDA.Natural Resources Conservation Service through an interagency agreement with the U.S. Environmental Protection Agency.
All images on this page, unless otherwise noted, are courtesy of the U.S. Department of Agriculture or USDA NRCS. For questions on this material, contact Jill Heemstra, jheemstra@unl.edu.

 

The Importance of Conservation in Animal Agriculture


Module Home | Importance of Conservation (you are here) | Conservation Practices in Animal Ag

This page focuses largely on USDA Natural Resources Conservation Service (NRCS) practice standards and how NRCS works with farmers by providing technical and financial assistance. The next section in this module discusses many of the practices relevant to animal agriculture in greater detail.

 

Why is conservation important in animal agriculture?

Conservation is key for farmers interested in protecting natural resources while producing food, fuel, and fiber from working lands. There are a variety of conservation practices that can be voluntarily implemented to protect natural resources for surrounding ecosystems, community, and future generations. Conservation practices can have both on-farm and off-farm benefits and can be customized to the unique location, soils, and needs of each farm. Conservation practices are site-specific, not one-size-fits-all. They must be planned and installed with the characteristics of the individual site in mind.

Many conservation practices are voluntary and incentivized through technical and financial assistance. If a farm is subject to regulatory oversight, NRCS practice standards may not meet the requirements of state or federal regulations or permits. Producers should double-check those requirements rather than assuming that they will suffice.

several different types of animal agriculture operations

Photo 1. Animal agriculture operations are very different from farm to farm.

Because manure is one of the largest by-products of animal feeding operations, conservation practices are often designed to increase the farmer’s ability to manage manure as a beneficial resource and reduce risk associated with manure application. Nutrients (whether from manure or from inorganic fertilizer) not taken up by crops can run off from fields or leach to groundwater through rain events or irrigation.

Conservation practices can have beneficial impacts on water quality, wildlife habitat, and air quality. Adopting practices that result in manure applications that are well-timed, at agronomic rates, and away from sensitive locations can help farmers make significant positive contributions to water quality. Conservation practices are important in grazing operations to improve soil and vegetation health and to protect water quality and wildlife habitat. For example, restricting livestock access to a stream or creek reduces the chance the animals will deposit manure or urine in the water, break down stream banks and beds, and/or stir up sediment. Rotational grazing can provide important rest and recovery time for vegetation and allow wildlife cover for nesting or raising their young.

Agencies Involved in Implementing Conservation on Farms

There are several public agencies that cooperate to encourage the use of conservation practices on farms:

USDA Natural Resources Conservation Service (NRCS)

usda service center sign

Photo 2. A local USDA Service Center

USDA NRCS was established in 1935 to work in close partnerships with farmers and ranchers, local and state governments, and other federal agencies to maintain healthy and productive working landscapes on a voluntary, non-regulatory basis. Originally known as the “Soil Conservation Service,” the name was changed to NRCS in 1994 to better reflect the broad scope of the agency’s mission. Learn more about the history of NRCS.

The National Office is located in Washington, DC, and is where national policy, procedures, and conservation practice standards are developed. State offices adopt these standards, either directly, or with changes that make the standards more stringent. The local or district office (Photo 2) works directly with farmers and ranchers to assist them in protecting natural resources by implementing conservation practices on working land. They provide technical and sometimes financial assistance for conservation practices. Learn more about how NRCS is organized.

Video: How to receive conservation assistance from NRCS

Financial assistance for USDA NRCS conservation practices comes from the Farm Bill, a piece of legislation that is developed about every 5 years by Congress. The Farm Bill is traditionally made up of several programs in the areas of food and nutrition assistance, marketing, commodity support, research, conservation, and more. The conservation programs authorized in the 2014 Farm Bill include:

  • Environmental Quality Incentives Program (EQIP)
  • Conservation Stewardship Program (CSP)
  • Agricultural Management Assistance Program (AMA)

Local NRCS offices will help farmers determine if their conservation needs are a fit for financial assistance. Factors that they will consider include:

  • Whether the farm is in a watershed or area designated with a high need for conservation practices
  • Past efforts of the farmer
  • Legislative priorities, such as bioenergy
  • The need to encourage beginning, veteran, and minority farmers

More information on financial assistance is available below (How Do Farmers Access Technical or Financial Assistance for Conservation?)

Conservation Districts

conservation district signPhoto 3. This local conservation district office is located in the same building as the local USDA service center.

Conservation districts are local governmental units responsible for protecting and conserving natural resources in their assigned geographic area. They are governed by a locally-elected board. In some states, they may have a different name, such as soil and water conservation district or natural resource conservation district. There are over 3,000 conservation districts, nationwide.

Conservation districts often partner with NRCS (Photo 3) to work with local farmers, ranchers, and other landowners to implement conservation practices that help address issues of local importance. By working together, NRCS and the districts can more efficiently address conservation needs.

US Environmental Protection Agency

EPA’s role in conservation is primarily regulatory but also includes non-regulatory, voluntary, and incentive-based programs such as the Clean Water Act Section 319 funding. This program provides grants to states and tribes to reduce nonpoint source runoff.

EPA also develops partnerships with industry. One such example is the EPA AgSTAR program, which works with farmers on a voluntary basis to encourage the use of anaerobic digesters for manure treatment and renewable energy generation.

Recommended resource: EPA National Agriculture Center includes information on regulations, compliance assistance, and partnerships.

State Environmental/Water Quality Agencies

sky reflected in water

Photo 4. State environmental agencies are generally tasked with enforcing the Clean Water Act and Clean Air Act.

Many Clean Water Act and other programs that originate with federal statutes are implemented by State, Tribal, and Territorial environmental agencies. Those programs generally work directly with local partners and landowners to develop watershed plans and implement nonpoint source control measures. Those partners often include Conservation Districts for agricultural projects and often utilize resources from multiple agencies and organizations, including USDA. Under Section 319 of the CWA, states, territories, and tribes receive grant money that supports a wide variety of activities to control nonpoint source pollution, including technical assistance, financial assistance, education, training, technology transfer, demonstration projects, and monitoring to assess the success of nonpoint source implementation projects.

Recommended Resource: Nonpoint Source Success Stories features stories about nonpoint source impairments with documented water quality improvements attributable to restoration efforts.

State Agricultural Departments

For the most part State agricultural Departments do not play a direct regulatory role in enforcing the Clean Water Act or Clean Air Act. One major area where state agriculture departments are involved in the implementation of conservation practices are in the case of animal mortality, both routine and catastrophic. Most states have regulations that specify appropriate methods for carcass disposal. State agriculture departments may also develop programs that encourage the use of conservation practices through cost-share, educational outreach, or other methods.

NRCS Conservation Practice Standards

There are over 160 conservation practices for which national standards have been developed. Any that are adopted by a state can be implemented in that state to assist farmers and ranchers with their environmental stewardship efforts. Farmers and ranchers should use the conservation practice adopted by the state, rather than the national standard.

To find your state’s approved practice standards, contact your local NRCS office for assistance.

conservation practice collage

Photo 5. Many different conservation practices are used on animal agriculture operations.

What are conservation practice standards?

page 1 of the conservation practice standard for anaerobic digester (366)

Photo 6. A screenshot of the Anaerobic Digester conservation practice standard. Click here to download the full-size PDF version.

A conservation practice is defined as: “A specific treatment, such as a structural or vegetative measure, or management techniques, commonly used to meet specific needs in planning and implementing conservation, for which standards and specifications have been developed.”

NRCS conservation practice standards provide guidance for applying conservation practices and set the minimum level for acceptable application of the technology. Each standard is given a number. For example, the standard for “Anaerobic Digester” is #366. Practice standards include information (Photo 6), such as:

  • Purpose: The conservation goal achieved with this practice
  • Where it applies: The type of farm, land use, or situation where the practice is appropriate
  • Criteria: Location, safety considerations, permits needed, management, related conservation practices, and other important considerations

Three categories of conservation practices that apply to animal agriculture include:

  • Manure Management
  • Land and Pasture Management
  • Mortality (Dead Animal) Management

Specific practices and details about each practice are included in the next section, Conservation Practices in Animal Agriculture.

How are standards for practices developed/updated?

Practice standards may be newly identified or change over time based on new science and technology. They are periodically reviewed and updated, usually every 5 years. Any new or updated practice standard is reviewed by technical experts in pertinent fields and is available for review and comment by the public before it is adopted.

NRCS publishes national conservation practice standards in its National Handbook of Conservation Practices (NHCP). If a practice is adopted by a state, the state has some latitude to develop a more stringent or specific version that fits typical conditions or situations in that state.

Recommended Resource: The first 12-13 minutes of the video “Use of NRCS Conservation Practice Standards and Specifications” describes the process of how a new standard may be identified as well as the process used to validate it and the sections included in a standard. It is presented for NRCS staff, but is useful for others that work with farmers who want more background on how a practice standard is developed and what is required to be in a standard.

What is conservation planning?

conservation planning

Photo 7. Conservation planning needs to consider individual farm goals and current conditions.

A conservation plan is a record of the conservation practices implemented on a farm or ranch. It may include sub-plans such as one for grazing management, comprehensive nutrient management, wildlife management, or others.

Conservation planning starts with a farmer or rancher recognizing a problem area or wanting to improve some aspect of the farm or ranch. The next step is to contact NRCS. NRCS helps the farmer or rancher review and analyze the current conditions for possible solutions. Depending on the preferences of the client, certain practices may be selected to include in the conservation plan.

Conservation plans are voluntary and are developed by NRCS at no cost.

How do farmers access technical or financial assistance for conservation?

Contact your local NRCS office to access technical assistance in implementing conservation practices. If conservation practices are eligible for financial assistance (cost-share), farmers complete and submit an application. If approved for cost-share, a contract is developed that specifies what will be done, when it will be done, and how much assistance will be provided.

A look at specific practices that can apply to animal agriculture operations is discussed in the next section, Conservation Practices in Animal Agriculture

Previous: (Home) Animal Ag, Manure, and Water Quality | Next: Conservation Practices in Animal Ag

Acknowledgements

These materials were developed by the Livestock and Poultry Environmental Learning Center (LPELC) with funding from the USDA.Natural Resources Conservation Service through an interagency agreement with the U.S. Environmental Protection Agency.
All images on this page, unless otherwise noted, are courtesy of the U.S. Department of Agriculture or USDA NRCS. For questions on this material, contact Jill Heemstra, jheemstra@unl.edu.
 

Recommendations for Manure Injection and Incorporation Technologies for Phase 6 Chesapeake Bay Watershed Model


Proceedings Home W2W Home w2w17 logo

Purpose

A Best Management Practice (BMP) Expert Panel was convened under guidance of the Chesapeake Bay Program’s (CBP) Water Quality Goal Implementation Team to assess and quantify Nitrogen and Phosphorus load reductions for use in the Phase 6 Chesapeake Bay Watershed Model when manure is injected or incorporated into agricultural lands within the watershed. (Further description of Expert Panels and processes can be found in the 2017 Waste to Worth Proceedings and Presentation by Jeremy Hanson and Mark Dubin).

What Did We Do?

The Expert Panel first created definitions of injection and incorporation practices, which allowed technologies utilized in research to be categorized within each definition. Categorization considered the manner in which manure was placed beneath the soil surface as well as the level of surface disturbance. Manure injection was defined as a specialized category of placement in which organic nutrient sources (including manures, biosolids, and composted materials) are mechanically applied into the root zone with surface soil closure at the time of application with soil surface disturbance of 30% or less. Manure incorporation was defined as the mixing of dry, semi-dry, or liquid organic nutrient sources (including manures, biosolids, and compost) into the soil profile within a specified time period from application by a range of field operations (≤24hr for full ammonia loss reduction credit and 3 days for P reduction credit(s)). Incorporation was divided into categories of high disturbance (<30% residue retention) and low disturbance (>30% residue retention). Both liquid and solid manures were considered.

The panel conducted an extensive literature review of research that allowed comparison of nutrient loss after manure injection and incorporation with a baseline of surface manure application without incorporation. These comparisons were assembled in a large categorical table in percentage form, that reflected loss reduction efficiency. Many manuscripts offered a percentage comparison of application treatments to the surface application baseline. For research reports that did not provide a percentage comparison, the panel interpreted results into a percentage comparison when possible.

Consideration to soil variability and location in the Chesapeake Bay Watershed was considered on a very broad basis and in a manner consistent with work of other panels and modeling team recommendations. Loss reduction efficiencies were provided for soils or locations listed as either Coastal or Upland regions. Nitrogen efficiencies did not vary between the regions, but Phosphorus efficiencies did.

What Have We Learned?

Nitrogen and Phosphorus loss reduction efficiency reported or derived from literature varied within categories. For some categories, the volume of literature was small. Research providing these efficiencies is often conducted on small plots with simulated rainfall. Literary reduction results were often provided as a range and not as a single value. Professional scrutiny and judgment was applied to each value provided from literature and to all values within injection and incorporation categories to determine loss reduction efficiencies to be used in the broad categories of the model. The final loss reduction efficiencies of the Expert Panel’s final report are provided in Tables 1 (Upland Region) and 2 (Coastal Region).

Table 1. Loss reduction efficiency values for Upland regions of the Chesapeake Bay Watershed.

 

 

Category

Nitrogen

Phosphorus

Time to Incorporation

Ammonia Emission Reduction

Reduction in N Loading1

Time to Incorporation

Reduction in P Loading2

Injection

0

85%

12%

0

36%

Low Disturbance Incorporation

≤24 hr

24-72 hr

50%

34%

 

8%

8%

≤72 hr

 

24%

High Disturbance Incorporation

≤24 hr

24-72 hr

75%

50%

 

8%

8%

≤72 hr

 

0%3

1 Reduction in N loading water achieved only for losses with surface runoff. The portion of total N loss through leaching is not impacted by the practices.  25% of total N losses to water are assumed to be lost with runoff (both dissolved N and sediment-associated organic matter N).

2 Reduction in P loading water achieved only for losses with surface runoff. The portion of total N loss through leaching is not impacted by the practices.  80% of total P losses to water are assumed to be lost with runoff (both dissolved  and sediment-bound P) in upland regions of the watershed.

3 Reduction in dissolved P losses typically offset by greater sediment-bound P losses due to greater soil erosion with tillage incorporation in upland landscapes.

 

Table 2. Loss reduction efficiency values for Coastal Plain region of the Chesapeake Bay Watershed.

 

 

Category

Nitrogen

Phosphorus

Time to Incorporation

Ammonia Emission Reduction

Reduction in N Loading1

Time to Incorporation

Reduction in P Loading2

Injection

0

85%

12%

12%

0

22%

Low Disturbance Incorporation

≤24 hr

24-72 hr

50%

34%

 

8%

8%

≤72 hr

 

14%

High Disturbance Incorporation

≤24 hr

24-72 hr

75%

50%

 

8%

8%

≤72 hr

 

14%

1 Reduction in N loading water achieved only for losses with surface runoff. The portion of total N loss through leaching is not impacted by the practices.  25% of total N losses to water are assumed to be lost with runoff (both dissolved N and sediment-associated organic matter N).

2 Reduction in P loading water achieved only for losses with surface runoff. The portion of total N loss through leaching is not impacted by the practices.  48% of total P losses to water are assumed to be lost with runoff (both dissolved and sediment-bound P) in Coastal Plain.

Future Plans

The report of the Manure Injection and Incorporation Panel were accepted by the Chesapeake Bay Program’s Agricultural Workgroup in December 2016. The values will be utilized in Phase 6 of the Chesapeake Bay Watershed Model. Future panels may revisit the efficiencies as future model improvements are made.

Corresponding author (name, title, affiliation) 

Robert Meinen, Senior Extension Associate, Penn State University

Corresponding author email address  

rjm134@psu.edu

Other Authors 

Curt Dell (Panel Chair), Soil Scientist, USDA-Agricultural Research Service

Art Allen, Associate Professor and Associate Research Director, University of Maryland – Eastern Shore

Dan Dostie, Pennsylvania State Resources Conservationist, USDA-Natural Resources Conservation Service

Mark Dubin, Agricultural Technical Coordinator, Chesapeake Bay Program Office, University of Maryland

Lindsey Gordon, Water Quality Goal Implementation Team Staffer, Chesapeake Research Consortium

Rory Maguire, Professor and Extension Specialist, Virginia Tech

Don Meals, Environmental Consultant, Tetra Tech

Chris Brosch, Delaware Department of Agriculture

Jeff Sweeney, Integrated Analysis Coordinator, US EPA

For More Information

Two related presentations given at the same session at Waste to Worth 2017

Acknowledgements

Funding for this panel was provided by the US EPA Chesapeake Bay Program and Virginia Tech University through an EPA Grant.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Developing Science-Based Estimates of Best Management Practice Effectiveness for the Phase 6 Chesapeake Bay Watershed Model

Proceedings Home W2W Home w2w17 logo

Purpose

The Chesapeake Bay Program (CBP) is a regional partnership that leads and directs Chesapeake Bay restoration and protection. The CBP uses a suite of modeling and planning tools to estimate nutrient (nitrogen and phosphorus) and sediment loads contributed to the Bay from its watershed, and guide restoration efforts. Non-point source (NPS) pollutant sources (e.g., agricultural and urban runoff) are largely related to diverse land uses stretching across six states and the District of Columbia. On-the-ground pollutant reductions are achieved by implementing both management and structural best management practices (BMPs) on those diverse land uses. Short and long-term reductions in NPS pollutant loads that result from BMP implementation are estimated using the CBP modeling suite of tools. The CBP recognizes (i.e., represents pollutant reduction credits for) over 150 BMPs across 66 land uses total for all sectors in its Phase 6 suite of modeling tools. The estimated pollutant reduction performance (i.e., effectiveness) of each BMP is parameterized in the CBP modeling suite. Within the CBP, BMP effectiveness is determined by groups of qualified scientific and technical experts (BMP Expert Panels) that review the relevant literature and make an independent determination regarding BMP performance which are reviewed and approved by the CBP partnership before being integrated in to the modeling tools by the CBP modeling team.

BMP Expert Panels are primarily convened under the auspices of the CBP’s Water Quality Goal Implementation Team and tasked to specific sector workgroups for oversight and management. Panels are tasked with addressing a specific BMP, or a suite of related BMPs. Panel members, in coordination with the CBP partnership, are selected based on their scientific expertise, practical experience with the BMP, and expertise in fate and transport of nutrients and sediment. Panels review the relevant literature and through a deliberative process and form recommendations on BMP pollutant production performance, and how the BMP(s) should be accounted for/incorporated into the CBP modeling tools and data reporting systems. Convening BMP Expert Panels is an ongoing focus and priority of the CBP partnership, given the integral role BMP implementation plays in achieving the pollution reduction goals required by the 2010 Chesapeake Bay Total Maximum Daily Load (TMDL).

What Did We Do?

Expert panels follow the process and adhere to expectations outlined in the Chesapeake Bay Program Partnership’s Protocol for the Development, Review, and Approval of Loading and Effectiveness Estimates for Nutrient and Sediment Controls in the Chesapeake Bay Watershed Model (aka the “BMP Protocol”). The expert panel process functions as an independent peer review, similar to that of the National Academy of Sciences.

Each panel reviews and discusses all current published literature and available unpublished literature and data related to the BMP(s), and formulates recommendations using the guidance provided in the BMP Protocol to help weigh the applicability of each data source.  Consensus panel recommendations are recorded in a final report, which is presented to relevant CBP partnership groups, including the CBP partnership’s Agriculture Workgroup for feedback and approval.

Panel recommendations are built into the modeling tools following CBP partnership approval of the panel’s report.

Chesapeake Bay Watershed Map

Basic Diagram of the Chesapeake Bay Program Expert Panel BMP Review Process

What Have We Learned?

The availability of published, peer-reviewed data varies greatly based on the scope of the panel. Some panels have dozens of articles to analyze while others may have a limited number of published studies to supplement gray literature, unpublished data and their best professional judgment. Even panels with a large amount of relevant literature at their disposal identify important gaps and future research needs. Given the wide range of stakeholders in the CBP partnership, regular updates and communication with interested parties as the panel formulates its recommendations is extremely important to improve understanding and acceptance of final panel recommendations.

Future Plans

The Chesapeake Bay Program evaluates BMP effectiveness estimates as new research or new conservation and production practices become available. Thus, expert panels sometimes revisit BMPs that were previously reviewed, but new and innovative BMPs are also considered. The availability of resources and new research limit the frequency of these reviews in conjunction with the priorities of the CBP partnership. Given the CBP partnership’s interest in adaptive management and continually improving its scientific estimates of BMP effectiveness, there will continue to be BMP expert panels for the foreseeable future.

Corresponding author (name, title, affiliation)

Jeremy Hanson, Project Coordinator – Expert Panel BMP Assessment, Virginia Tech

Corresponding author email address

jchanson@vt.edu

Other Authors

Mark Dubin, Agricultural Technical Coordinator, University of Maryland Extension

Brian Benham, Professor and Extension Specialist, Virginia Tech

Each expert panel has at least several other authors and contributors, which is not practical for listing here. Each individual report identifies the panel members and other contributors for that specific panel.

Additional Information

The BMP Review Protocol is available online at http://www.chesapeakebay.net/publications/title/bmp_review_protocol

All final expert panel reports are posted on the Chesapeake Bay Program website under “publications”: http://www.chesapeakebay.net/groups/group/bmp_expert_panels

Acknowledgements

These BMP expert panels would not be possible without the generosity of expert panel members who volunteer their valuable time and perspectives. Staff support, coordination and funding for these panels is provided by the EPA Chesapeake Bay Program, specifically through Cooperative Agreements with Virginia Tech and University of Maryland, with additional contract support from Tetra Tech as needed. The work of these expert panels is strengthened through the participation, review and comments of the CBP partnership.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

The Arkansas Discovery Farm Program: Connecting Science to the Farm

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Create the Arkansas Discovery Farm Program?

Agriculture in Arkansas is under increasing pressure to manage nutrients and sediment in an environmentally sustainable manner.  In many sectors of the farming community, this has created severe constraints to remaining economically viable and competitive in today’s global market place.  In northwest Arkansas, home to the nation’s second largest broiler poultry production, farmers have been under intense scrutiny and litigation over the last decade, due to downstream water users (i.e., Oklahoma) questioning the role of agriculture in water quality impairment.  Also, increasing national attention is being focused on reducing nutrients to the Gulf of Mexico, which will further increase the need of agricultural producers to increase nutrient efficiency while declining groundwater levels in crop producing areas of eastern Arkansas will increase the need for greater water efficiency.  The Arkansas Discovery Farm Program was initiated in 2009 to document the effectiveness of conservation practices on “real-world” private farms across the diverse forage, livestock, and row crop agricultural setting across the State.

What Did We Do?

We are monitoring runoff quality from seven farms as we are quantify sediment and nutrient losses from all major row crop and livestock commodities including rice, soybean, corn, cotton, poultry and beef cattle.  We are currently monitoring the quality of runoff from 19 fields using automated water quality samplers that are now equipped modems that contact us via cell phone when sampling is initiated.    On our row crop fields, we have increased our efforts to monitor irrigation water use and needs.  All fields are equipped with turbine-type irrigation flow meters that utilize dataloggers to automatically records flow data.  On two farms, we split fields in half and monitored evapotranspiration with atmometers (ET gages) and compared to our computer irrigation scheduler to calibrate the ET gages as an easier field method for irrigation scheduling.

What Have We Learned?

Due to the fact that we have been monitoring runoff since mid-2011 at the longest, we have limited reliable information to present.  As our first year, 2011 produced several severe flood-stage storms and 2012 provided a record breaking drought, it is difficult to quantify impact at this point.  While the water quality monitoring is a cornerstone, empowering agricultural producers to take ownership in finding solutions to minimize environmental impact is paramount to protecting voluntary efforts for the industry.  Our major findings to date have been the willingness of Arkansas farmers in general to embrace the Program, to be environmentally accountable for their actions, and to be proactive rather than reactionary.   

Future Plans

We have plans to develop another Discovery Farm in the litigated Illinois River Watershed, Northwest Arkanas.   While there is a great deal of interest in developing a commerical forestry Discovery Farm, a lack of potneital funding has limited those plans to date.  As we continue to collect data, we hope we can provide timely information on both economic and natural resource sustainability on behalf of Arkansas Agriculture to regulators, lawmakers and other decision makers. 

Authors

Andrew Sharpley, Professor, Division of Agriculture, University of Arkansas System, sharpley@uark.edu

Mike Daniels, Professor, Cooperative Extension, Division of Agriculture, University of Arkansas System

Neal Mays, Program Technician, Division of Agriculture, University of Arkansas System

Cory Hallmark, Program Technician, Cooperative Extension, Division of Agriculture, University of Arkansas System

Additional Information

http://discoveryfarms.uark.edu/

Acknowledgements

Arkansas Association of Conservation Districts, Arkansas Conservation Commission, Arkansas Natural Resource Conservation Service, Arkansas Farm Bureau

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

What Practices Increase Infiltration and Reduce Runoff on Slopes Greater Than 30%?

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Are We Concerned About Runoff on Farms?

Farming in the driftless region of Wisconsin where the steep fields and waterways are all connected to rivers and streams can have signficant risks to water quality.  Sediment and nutrient movement into streams, rivers, and lakes in this part of the state has always been an issue, and agriculture has been identified as the largest contributor.  This talk is given by a farmer living and farming in one of the most challenging areas of the country.

What Did We Do?

Home dairy farm

For seven years, the UW – Discovery Farm Program (DFP) and the United States Geological Survey (USGS) conducted a paired research project on a livestock operation in the driftless region of Wisconsin.  This farm consisted of about 800 acres of tillable acres where fields are steep (some >30% slope), and every one drains into a waterway or stream which eventually flows into the Mississippi River.

What Have We Learned?

The USGS installed two in-stream monitoring stations in two small headwater streams that divide the farm.  The north basin consists of 430 acres with 150 acres cropland, 250 acres woodland, and 30 acres pasture.  The south basin consists of 215 acres with 39 acres cropland and pasture, 107 acres woodland, and 69 acres in CRP/CREP.  The farming system uses a combination of conservation tools and techniques that have been adapted to fit the physical setting of the area, and the goals and vision of the producer who has a rich history of conservation. Harvesting precipitation is constantly at the forefront of operations through careful soil management, a network of small check dams and larger at-grade stabilization structures, and a focus on minimizing soil disturbance activities. Seven years of data indicated that almost all sediment losses occurred during a few large summer storms that exceed the design criteria.

Overlooking the dairy farm

Future Plans

This project is completed and all that remains is the development of outreach and education materials.

Authors

Joe Bragger, Dairy Farm Manager, Bragger Family Dairy,  braggfam@triwest.net

Dennis R Frame, Director, UW – Discovery Farms

Amber Radatz, Outreach Specialist, UW – Discovery Farms

Eric Cooley, Outreach Specialist, UW – Discovery Farms

Dam on the farm

Additional Information

Information is available through the website (http://www.uwdiscoveryfarms.org) or by contacting the office at 1-715-983-5668.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.