The Poultry Mega-Manureshed that is the Southeastern USA: Is It Sustainable?


Scientists from across the Long-Term Agroecosystem Research (LTAR) network are working to address nutrient management challenges that confront the poultry industry (broilers, layers, pullets, and turkeys) in the context of a “manureshed” – the geographic area surrounding one or more livestock and poultry operations where excess manure nutrients can be recycled for agricultural production. This study focuses on poultry manuresheds identified east of the Mississippi across the Southeast and Mid-Atlantic regions where over 55% of the U.S. poultry production is located. Poultry manure has been used as a fertilizer most extensively on forage and pasture crops grown near poultry houses. Poultry is a highly specialized production system, with a portion of feed grains grown at substantial distance from where the animals are raised. Consequently, nutrients excreted in manure often exceed the nutrient requirements for local crop production. This situation results in surpluses in local soils that receive manure. The surpluses in turn lead to eutrophication of water bodies; that is, the biological enrichment of water bodies derived from nutrient pollution. Without a mechanism to redistribute manure nutrients more widely, the production and manure management system is unsustainable.

What Did We Do

Central to the concept of the manureshed are sources and sinks, which represent spatial extents where the nutrients in livestock and poultry manure produced exceeds the nutrient needs of crops in the area (sources) or falls short of crop needs (sinks). Although manure nitrogen (N) and phosphorus (P) must be co-managed, we focus our analysis on P since the ratio of plant-available N:P in poultry manure is low (< 4:1) relative to crop needs (~ 10:1). We used data from the U.S. Census of Agriculture and estimates from the International Plant Nutrition Institute’s (IPNI) Nutrient Use Geographic Information System (NuGIS) to identify manure-based P produced annually by poultry production, crop nutrient needs for all crops, and fertilizer applied to farmland in each of the 3109 U.S. counties of the 48 conterminous U.S. states in 2012. A classification approach was then used to determine whether each county was a source or a sink. The next step was a step-wise spatial analysis to identify the nearest sink counties available for redistribution of manure-based P from each source county cluster. The result was a “mega-manureshed,” the largest contiguous area of source and sink counties in the United States.

What Have We Learned

The poultry mega-manureshed extends from the Mid-Atlantic, across the southeast to the Mississippi River and beyond (Figure 1). In the Georgia Coastal Plain manureshed, a component of the megamanureshed, the maximum distance that manure would need to be hauled from source area to sink area is only nine miles. However, in the Southern Piedmont and the Shenandoah manuresheds, the maximum distance that manure would have to be hauled is 65 and 146 miles, respectively. These are conservative estimates. Our analysis does not account for the presence of a large swine manure source area in North Carolina. If those manure nutrients are to be land applied, then additional sink areas would be needed. Additionally, we do not have data on soils that allow us to identify areas where P levels are already excessively high such that additional P should not be added. Both factors would greatly expand the size of the manureshed and increase the maximum hauling distance. Since hauling manure a hundred miles or more is not economically feasible, alternatives, such as pelletizing; use as feedstock for bioenergy and biochar production; and biological, physical, or chemical removal and recovery of nutrients, are needed in order to sustain the poultry industry.

Figure 1. Poultry mega-manureshed: Sources and sinks for P from the Mid-Atlantic across the southeast. Counties shown in white are neither sources nor sinks; P inputs are roughly in balance with crop uptake. The blue area in North Carolina is a P source area from swine

The vertical integration that is characteristic of meat and egg production components of the poultry industry lends itself well to the infrastructure requirements and collective decision making needed to achieve manureshed management. As manure treatment innovations evolve, the U.S. poultry industry is poised to take advantage of insights gained from the manureshed approach to target manure nutrient redistribution efforts.

Future Plans

Over the next 10 years, LTAR researchers will be working with producer partners to conduct long-term field research on the economic and environmental costs and benefits of importing manure nutrients to cropland and grazing land in different climates. Beyond traditional land management and technology research, we will also be working to build societal awareness of the benefits and challenges of the manureshed approach and determine what is needed for widespread support of the concept. LTAR scientists will work to improve or develop new manure treatment technologies. We plan to conduct economic research on the cost effectiveness of different types of management practices, as well as the need for economic incentives.


Ray B. Bryant, Research Soil Scientist, USDA ARS Pasture Systems and Watershed Management Research Unit, University Park, PA

Additional Authors

    • Dinku M. Endale, USDA-ARS Southeast Watershed Research Laboratory, Tifton, GA (Retired)
    • Sheri A. Spiegal, USDA-ARS Jornada Experimental Range, Las Cruces, NM
      -K. Colton Flynn, USDA-ARS Grassland Soil and Water Research Laboratory, Temple, TX
    • Robert J. Meinen, Senior Extension Associate, Dept. Animal Science, The Pennsylvania State University
    • Michel A. Cavigelli, USDA-ARS Sustainable Agricultural Systems Laboratory, Beltsville, MD
    • Peter J.A. Kleinman, USDA-ARS Soil Management and Sugar Beet Research Unit, Fort Collins, CO

Additional Information

Bryant RB, Endale DM, Spiegal SA, Flynn KC, Meinen RJ, Cavigelli MA, Kleinman PJA. Poultry manureshed management: Opportunities and challenges for a vertically integrated industry. J Environ Qual. 2021 Jul 26. doi: 10.1002/jeq2.20273. Epub ahead of print. PMID: 34309029.

Spiegal, S., Kleinman, P. J. A., Endale, D. M., Bryant, R. B., Dell, C., Goslee, S., … Yang Q. (2020). Manuresheds: Recoupling crop and livestock agriculture for sustainable intensification. Agricultural Systems. 181: 1-13. 102813. Doi: 10.1016/j.agsy.2020.102813.


This research was a contribution from the Long-Term Agroecosystem Research (LTAR) network. LTAR is supported by the U.S. Department of Agriculture, which is an equal opportunity provider and employer.


The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.