Manure Land Application Strategies to Mitigate Antibiotics and Antibiotic Resistance Genes in the Agricultural Environment

When it comes to the land application of livestock manure, a major environmental concern is the loss of manure-borne nutrients to surface runoff. Management practices and regulations focus on how nutrients travel in runoff as functions of the timing and method of land application as well as proximity to water sources. When manure is applied to soil, manure constituents other than nutrients are also introduced to soil, such as heavy metals, antibiotics, and antibiotic resistance genes. Knowledge about the behaviors of these manure constituents in the environment as a function of manure application strategies is limited.

In this article we will discuss the effects of various land application strategies on the fate and transport of manure borne antibiotics and antibiotic resistance genes in soil and runoff. This will be broken down into three sections: manure storage; land application methods; and vegetative barrier. Although our studies were conducted using swine manure slurry, it is expected that that the general conclusion would also apply to other types of manure. Prior to a detailed description of our findings, we will first present some background information about manure-borne antibiotics and antibiotic resistance genes.

Why Care About Antibiotics?

Antibiotics are often used in concentrated animal feeding operations (CAFOs) to prevent and treat diseases in livestock animals, increasing the density at which livestock can be kept. A substantial portion of these antibiotics can move thorough the digestive system of livestock, and end up in livestock urine and feces. These antibiotics can persist in the livestock manure and go on to alter the microbiome of soil and water. Bacteria exposed to these antibiotics may gain resistance to the antibiotics. This can be a major public health concern, because even the antibiotic resistant bacteria are harmless they may spread the resistance genes to pathogens. This, in turn, could impact human and animal health, as the antibiotics which we rely upon to treat infection will no longer be effective on treating resistant pathogens.

graphic showing antibiotic movement from adminstration to cropland to runoff

Manure Storage

Prior to land application, manure is usually stored in livestock waste management structures. In one study, the effects of anaerobic storage of manure on the fate of antibiotics and antibiotic resistance genes in manure were investigated. In this study, the levels of chlortetracycline and tylosin in manure slurry were monitored. The two antibiotics in swine manure degraded substantially over time under the anaerobic condition. The antibiotic resistance genes corresponding to chlortetracycline was also reduced substantially during manure storage.  In contrast, the resistance genes corresponding to tylosin did not decrease significantly.

Application Method

land application with manure tankerManure and manure slurry may be applied to fields using application methods such as broadcast, injection, and incorporation. These land application methods have varying effects on the spread of antibiotics and antibiotic resistance genes in croplands. A study was conducted to investigate how these land application methods may affect the concentrations of antibiotics and antibiotic resistance genes in runoff and soil following the land application of swine slurry. Results show that land application methods had no statistically significant effect on the aqueous concentrations of antibiotics in the runoff.  However, among the three land application methods tested, broadcast resulted in the highest total mass load of antibiotics in runoff from the three simulated rainfall events. Similarly, broadcast resulted in higher concentrations of antibiotic resistance genes in runoff than did injection and incorporation. In manure amended soils, the effects of land application on the concentration of antibiotics were compound specific. No clear trend was observed in the antibiotic resistance gene levels in soil.

Vegetative Barrier

grasses in a vegetative bufferVegetative barriers are strips of densely growing perennial plants seeded downslope on cropland adjacent to surface water. Vegetative barriers can stabilize the soil in local areas and reduce dissolved and sediment bound compounds in runoff, such as nutrients and particulates. The barriers are often used as an erosion control measure and some states regulate the use of vegetative barriers next to bodies of water and in areas with high slopes. One study tested whether vegetative barriers are effective in reducing antibiotics and antibiotic resistance genes. Results show that stripes of switchgrass (panicum virgatum L.) can effectively reduce antibiotic tylosin and its corresponding resistance gene erm(B) in runoff. Hence, vegetative barriers can be used as a low-cost option to reduce the spread of antibiotic and antibiotic resistance gene through runoff.

Conclusions

The control of manure-borne antibiotics and antibiotic resistance genes in the environment is complicated. Different antibiotic compounds have different properties, such as vulnerability to photo degradation and tendency to adsorb to soil particles. Hence, it is hard to use one land application strategy to effectively manage multiple antibiotics in both runoff and soil. Hence, knowing the dominant antibiotic compounds in the manure can be important. Similarly, different antibiotic resistance genes may be hosted in different bacterial species. These bacteria differ in their metabolisms and consequently respond differently to various land application strategies. Like the case for antibiotics, it is difficult to develop one land application strategy that would be effective to all classes of antibiotic resistance genes in manure. So, in addition to land application strategies, attention should also be given to develop manure storage strategies to reduce antibiotics and antibiotic resistance genes prior to land application.

For more information about this article, contact Xu Li.

2017 Webcasts Approved for ARPAS Continuing Education Units

These webcasts have been approved for 1 continuing education unit (each) as part of the American Registry of Professional Animal Scientists (ARPAS) program. To receive CEUs, view a live or archived webcast, complete an evaluation (if available), and contact ARPAS, 217-356-5390 to have the credit applied to your CEU balance. Repeat this process for each webcast being utilized for CEUs.

2017 Webcasts

The following webcasts require Flash Player (already installed on 98% of browsers) to view. You can go to the archive page and download power point slides and other resources even if you do not have Flash Player installed.

More Webcasts…

2016 Webcasts

Topics include: Construction and maintenance of manure ponds, antibiotic resistance, manure entomology, NAQSAT, Drones, manure safety and transport, the nutrient recycling challenge, Vermont nutrient management training course, and pathogens. More…

2015 Webcasts

Topics include: Manure Apps, Gypsum Bedding, Livestock Housing, Tile Drained Lands, Micro Manure Management, Horse Manure Composting, Uses of Biochar, Thermal Manure-to-Energy Systems, Mortality Management during Avian Influenza, Communication Pathways, Communicating During Controversy. More…

2014 Webcasts

Topics include: Capturing Nutrients, Manure as a biofuel, Water Quality Index, Liquid manure nutrients, Carbon credits, Bioaerosols, WOTUS, Biosecurity, Mortality composting, Whole Farm Nutrient management, Winter manure application, Next generation activities. More…

2013 Webcasts

Topics include: Risk Management, Waste to Worth, Mono-slope beef barns and research results, Bioavailability of Phosphorus, Capturing Nutrients. More…

2012 Webcasts

Topics include: Biofilters, The 4Rs, Microbes, Life-Cycle Assessments, Carbon Footprints, Nitrates, Adaptive Nutrient Managment, Chesapeake Bay, Emergency Management. More…

2011 Webcasts

Topics include: Top-dressing manure, Chesapeake Bay, Soil Health, Reducing Odor Risk, Anaerobic Digestion, NMP implementation, NAEMS, Lagoon Closure, Manure Economics, 2011 NPDES CAFO rule. More…

2010 Webcasts

Topics include: Cover Crops, Vegetative Environmental Buffers, Mortality Composting, Manure Spills, NAQSAT, Manure on No-Till, SPCC, Ammonia Emissions. More…

2009 Webcasts

Topics include: Feeding Strategies, Carbon Footpring, Conserving Nitrogen, AFO Inspection, Mortalities, Air Emissions, Grazing Management. More…

2008 Webcasts

Topics include: Market Based Conservation, Antibiotics and Hormones, Dry Manure Housing Systems, Ammonia, Small Farms, Regulations, Manure Management Planner Software. More…

2007 Webcasts

Topics include: Integrated Nutrient Management, Manure Application to Legumes, Value of Manure in Land Application, Smithfield Project, Value Added Processing of Manure, Manure Treatment Technologies, Value of Manure in Energy Generation, Vegetative Treatment Systems, and Innovative Manure Treatment Technologies. More…

2006 Webcasts

Topics include: CNMP Core Curriculum, Pathogens, EPA CAFO Regulations. More…

Having Trouble?

If you experience difficulty in viewing webcasts, please visit our webcast troubleshooting page:

On-Farm Nutrient Management Research: Replacing Commercial Sidedress Nitrogen with Liquid Livestock Manure on Emerged Corn

This webinar highlights the on-farm research that has been done and is being planned in the state of Ohio to capitalize on the opportunity to apply in-season nutrients with manure application. This presentation was originally broadcast on May 19, 2017. More… Continue reading “On-Farm Nutrient Management Research: Replacing Commercial Sidedress Nitrogen with Liquid Livestock Manure on Emerged Corn”

Manure and Cover Crops

In the Manure and Cover Crops roundtable, our goal was to discover whether manure and cover crops have complementary benefits related to soil quality. We debated if certain fields will produce more complementary benefits than others and whether timing of application and sampling affects these benefits. Finally, we’ll discussed whether we can derive an economic value for manure beyond its nutrient value. Field experiences and observations related to the value of manure as well as what farmers still need related to soil building with manure were discussed. This dialogue was the final of a four part series discussing the current state of our knowledge relative to manure’s impact on soil health.

If you have difficulties please see our webcast troubleshooting page. If you need to download a copy of a segment, submit a request.

Tim Harrigan, Michigan State University

Barry Fisher, NRCS Regional Soil Health Coordinator

Heidi Johnson, University of Wisconsin

Sarah Carlson, Practical Farmers of Iowa

Discussion

Other Manure and Soil Health (MaSH) Information

Manure and Soil Erosion, Runoff, and Losses

In the Manure and Soil Erosion, Runoff, and Losses roundtable, our goal was to discover the influence of manure on soil and runoff. We discussed if certain fields will produce more environmental benefits than others and whether timing of application affects these benefits. Finally, we debated whether we can derive an economic and environmental value for manure beyond its nutrient value, due to improved moisture retention and decreased erosion. Field experiences and observations related to the value of manure as well as what farmers still need related to soil building with manure were reviewed. This dialogue was the third in a four part series discussing the current state of our knowledge relative to manure’s impact on soil health.

If you have difficulties please see our webcast troubleshooting page. If you need to download a copy of a segment, submit a request.

Nathan Nelson, Kansas State University

Presentation Slides

John Gilley, USDA Agricultural Research Service

Presentation Slides

Mike Kucera, NRCS National Soil Survey Center

Presentation Slides

Andy Scholting, Nutrient Advisors

Presentation Slides

Discussion

Other Manure and Soil Health (MaSH) Information