Improving Production and Minimizing Nutrient Loss in Grazing Systems through the Use of Grass-Legume Mixtures

Purpose

Feed costs are typically one of the largest costs of dairy and beef cattle production. Grazing is an option that can greatly reduce the need for, and cost of, hay production.  The addition of legumes into the pasture can reduce the need for additional fertilizer.Unfortunately, grazing can also accelerate nutrient cycling and increase nitrogen (N) leaching.  This study examines the effect of adding birdsfoot trefoil (Lotus corniculatus L.), a legume with condensed tannins (CT), to the grazing system. Condensed tannins are noted for their ability to improve nutrient utilization and shift N excretion from the urine to the feces.  Nutrient cycling under the grass-legume mixtures and grass monocultures were evaluated.  The nitrogen content in urine and feces of cattle grazing forages with, and without CT, was also examined and compared to a traditional total mixed ration (TMR) diet.

What Did We Do?

Four grasses, tall fescue (Schedonorus arundinaceus Schreb.), meadow bromegrass (Bromus biebersteinii Roem. & Schult.), orchardgrass (Dactylis glomerata L.), and perennial ryegrass (Lolium perenne L.) in monocultures, and in binary mixtures with birdsfoot trefoil (Lotus corniculatus L.) were evaluated. The study was conducted at the Utah State University Intermountain Irrigated Pasture facility in Lewiston, Utah.  Jersey dairy heifers (~450 lbs) were used to rotationally graze the paddocks with heifers being moved to a new paddock every seven days for a 35-day rotation cycle. Pastures were irrigated every two weeks.  All pastures were fertilized with Chilean nitrate (25 lbs N/acre) in April.  Grass monocultures also received Feathermeal (31 lbs N/acre) in the late spring/early summer, and an additional dose of Chilean nitrate (25 lbs N/acre) in July.  Body weight, and urine and fecal (grab) samples were collected before each grazing event, and at the end of the grazing season.  Urine samples were analyzed for urea-N on a Lachat FIA analyzer.  Fecal samples were analyzed for total N and total carbon by combustion analysis using an Elementar varioMAX CN elemental analyzer, and ammonia-N on a FIAlab 2500 instrument. Soil samples were collected at the beginning and end of each grazing season, and analyzed for available N (nitrate and ammonia) on a Lachat FIA analyzer.  Soil water (leachate) N was monitored by means of zero-tension lysimeters bi-weekly during the growing season, and as much as possible in the spring and fall.  Leachate samples were analyzed for nitrate-nitrite concentration on a Lachat FIA analyzer. The amount of leachate produced from each lysimeter was measured, and total Leachate N determined. Forage protein levels were determined using NIR. Nutrient cycling in the urine and feces were analyzed and compared to the overall protein levels in the forage.

What Have We Learned?

Average daily gains were greater with the grass-legume mixtures than the monocultures (Figure 1). This is most likely due to the higher protein content of the grass-legume mixtures versus the grass monocultures (data not shown).

Figure 1. Average Daily Gain under grass-legume mixtures versus grass monocultures versus a total mixed ration in a feedlot setting

Both the urea-N concentration in the urine (Figure 2), and the fecal N content (Figure 3) were higher in the grass-legume mixtures than the grass monocultures.  This is most likely the result of being fed a higher protein content diet in the grass-legume mixtures.

Figure 2. Urea-N content in urine when grazing grass-legume mixtures versus grass monocultures versus a total mixed ration in a feedlot setting
Figure 3. Fecal Total N content when grazing grass-legume mixtures versus grass monocultures versus a total mixed ration in a feedlot setting

Although the grass monocultures were not heavily fertilized, and the protein content of the monocultures was lower than that of the grass-legume mixtures, nitrogen leaching observed in the leachate was generally higher under the grass monocultures.

Figure 4. Total NO3 lost in leachate per zero-tension lysimeter per year

Grass-legume mixtures may be able to more effectively capture nitrogen due to the differences in the rooting structure and the microbial populations. The grass-legume mixtures were also better economically.

Future Plans

The forage type explains approximately 40% of the variability. We plan to examine the impact of breed on the rates of gain and nutrient cycling next.

Authors

Rhonda Miller, Ph.D., Agricultural Environmental Quality Extension Specialist, Utah State University

Corresponding author email address

rhonda.miller@usu.edu

Additional authors

Blair Waldron, ARS Forage & Range Research Lab; Clay Isom, Utah State University; Kara Thornton – Kurth, Utah State University; Kerry Rood, Utah State University; Earl Creech, Utah State University; Mike Peel, ARS Forage & Range Research Lab; Jacob Hadfield, Utah State University; Ryan Larson, Utah State University, and Marcus Rose, Bureau Land Management

Additional Information

Hadfield, J., B. Waldron, S. Isom, R. Feuz, R. Larsen, J. Creech, M. Rose, J. Long, M. Peel, R. Miller, K. Rood, A. Young, R. Stott, A. Sweat, and K. Thornton. 2021. The effects of organic grass and grass-birdsfoot trefoil pastures on Jersey heifer development: Heifer growth, performance, and economic impact. J. Dairy Sci. 104(10): 10863-10878. DOI: 10.3168/jds.2020-19524.

Rose, M., B. Waldron, S. Isom, M. Peel, K. Thornton, R. Miller, K. Rood, J. Hadfield, J. Long, B. Henderson, and J. Creech.  2021. The effects of organic grass and grass-birdsfoot trefoil pastures on Jersey heifer development: Herbage characteristics affecting intake.  J. Dairy Sci. 104(10): 10879-10895. DOI: 10.3168/jds.2020-19563.

Acknowledgements

Funding for this project was provided by OREI, Western SARE, and Utah State University Experiment Station.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.

Potential soil health improvement through the integration of cover crops and manure in the upper Midwest

Purpose

Oftentimes fall manure application is associated with significant offsite transport of nitrogen and phosphorus into nearby bodies of water and the atmosphere. Mechanisms of losses include leaching, runoff, sediment transport, and volatilization processes. This is becoming more common as there has been a trend of increased wet springs that create difficult planting conditions. This prolonged period without an active root system leaves more time for nutrient loss from fall-applied manure to occur.

A strategy to offset nutrient losses in the fall and early spring is to plant a cover crop. The uptake of nutrients during this time in the field, which would otherwise be left fallow, allows for nutrients to be stored in the tissue of the cover crops, minimizing nutrient loss risk. Upon terminating the cover crops, the decomposing residues can supply nutrients to the succeeding row-crop. However, cover crop adoption is low in the upper Midwest US stemming from a short cover crop growing season due to the cold climate. This is especially the case for crops utilizing manure. A strategy to expand the cover crop growing season may be to interseed a cover crop into a maturing row-crop prior to harvest. Previous studies investigating the integration of manure and cover crops have seeded the cover crop after manure application. We wanted to measure the impacts of first planting a cover crop then applying manure once the cover crop has had ample time to get established. This may help expand the cover crop growing season and potentially limit the offsite transfer of pollutants to our water and air.

What Did We Do?

A small plot study was started in fall 2019 at the University of Minnesota West Central Research and Outreach Center near Morris, MN. We tested the effect of nitrogen source and cover crops on soil health, nutrient cycling, and agronomic responses using a randomized complete block design with split plots.

Cover crop mixtures of cereal rye and annual ryegrass were interseeded near corn’s fifth leaf collar (V5) growth stage, physiological maturity (R5 to R6 growth stage), or drilled after corn harvest. Dairy manure was sweep-injected to minimize soil disturbance in early and late fall, when soil temperatures were above and below 10°C (50°F), respectively. Non-manured plots received urea in the spring prior to corn planting. Urea applied plots (no manure) with no cover crops served as the control. Soil samples were taken throughout the cover crop and row-crop growing season from the 0-15, 15-30, and 30-60 cm (0-6, 6-12, and 12-24 in) soil layers. Cover crop biomass samples were taken in the late fall prior to the first frost event and prior to cover crop termination in the spring.

What Have We Learned?

Sweep injection is a reliable method to apply liquid manure to a field with an established stand of cover crops with minimal noticeable damage to the cover crops in the spring (Figure 1). Planting cover crops as soon as possible ensures more biomass is produced; planting after harvest consistently had lower cover crop yield than interseeding. Spring cover crop yield, right before termination, was highest when planted near physiological maturity [110 kg ha-1 (98 lb ac-1)] compared to drilling after harvest [87 kg ha-1 (78 lb ac-1)]. Nutrient source had a significant effect on silage yield. Manure, either applied in the early or late fall, had greater silage yield [58.5 and 58.7 Mg ha-1 (26.1 and 26.2 ton ac-1), respectively] than spring applied urea [53.6 Mg ha-1 (23.9 ton ac-1)]. Plots with cover crops interseeded at V5 had greater silage yield [59.5 Mg ha-1 (26.5 ton ac-1)] than all other treatments [54-56 Mg ha-1 (24-25 ton ac-1)] except no cover crops [57.8 Mg ha-1 (25.8 ton ac-1)].

Figure 1. Cover crops planted prior to late manure application. Photo was taken in the spring at cover crop termination.

Future Plans

Soil samples collected throughout the study are currently being analyzed for nutrient content and other soil health parameters. Results from this study will be used to develop best management practices for integrating cover crops and liquid injected manure in the upper Midwest.

Authors

Manuel J. Sabbagh, Graduate Research Fellow, University of Minnesota

Corresponding author email address

sabba018@umn.edu

Additional authors

Melissa L. Wilson, Assistant Professor, University of Minnesota; Paulo H. Pagliari, Associate Professor, University of Minnesota

Additional Information

Twitter: @mannyandmanure @manureprof

Lab website: https://wilsonlab.cfans.umn.edu/

Acknowledgements

This work is supported by the Conservation Innovation Grants program at the Natural Resources Conservation Service of the USDA, the Minnesota Corn Research and Promotion Council, and the Foundation for Food and Agriculture Research.

University of Idaho Sustainable Agriculture project seeks to create a bioeconomy from dairy byproducts to increase nutrient recycling

Purpose

This Sustainable Agriculture Systems project is called “Idaho Sustainable Agriculture Initiative for Dairy (ISAID).” Its main purpose is to create a bioeconomy around dairy manure and its byproducts, generating a circular use and economy of nutrients (Figure 1). Idaho is currently the third largest milk-producing state in the USA (USDA-NASS, 2021). Idaho dairy farms typically operate as confined operations that concentrate a significant amount of manure and nutrients in relatively small areas. Over the years, this situation has increased the concentration of nutrients in farms surrounding dairies. Meanwhile, distant farms may not benefit from using those nutrients (Leytem, et al. 2021). Except for its exceptional fertilizer and soil amendment value (USEPA, 2015), dairy manure is seen as a nuisance that needs to be managed well. Manure handling and use generate expenses for the producers and may be a nuisance for the neighboring communities and a potential environmental risk for the areas surrounding dairy production (Berg, et al. 2017; Moore and Ippolito, 2009; Sheffield, et al. 2008). This multidisciplinary project aims to create bioproducts from manure to significantly change the nutrient balance and the economic impact for producers in the region. Implementing the various strategies included in the project will help export nutrients to in-need areas within the region or outside the watershed altogether. In addition, increased income from manure processing would allow for better management and reduction of overall costs associated with nutrient management in the region.  The ISAID project includes three main areas that are integrated to generate the highest impact possible. Research, Extension, and Education are the distinctive areas of work. Still, these areas don’t work as silos, having a lot of integration to get the most of everybody’s work in the project.

What Did We Do?

Figure 1. Dairy bioeconomy

A group of 25 researchers in diverse areas of expertise obtained a USDA-NIFA Sustainable Agricultural Systems grant to conduct long-term (five years or more) projects. On the research side, the multifaceted studies that are under development include: use of amendments in manure composting to increase compost quality and value, reducing air emissions; nutrients’ extraction from various fractions of manure treatment to concentrate specific nutrients for individual commercialization (including nitrogen, phosphorous, and carbon); generation of hydrochar and biochar from dairy manure; bio-plastics production; cover crops use to increase nutrient extraction and soil health; fine-tuning fertilizer guides for crops using manure, compost, and other bioproducts. Analysis of each product’s economic and social impact separately and as a multi-prong approach. The extension component includes outreach to livestock and crop producers, local authorities, and communities to communicate the applicability of researched technologies and techniques, their impacts, benefits and challenges. The development of programs to train producers, allied industry, their workforce government employees on the diverse applications resulting from the project. The education component includes the participation of graduate and undergraduate students in all facets of the project and the development of educational programs for undergraduate and graduate students on topics associated with manure and nutrient management, bioeconomy, and on-farm application and management of these technologies and techniques.

What Have We Learned?

This project just finished the first of its five years; most of the projects are in the inception phase. We are generating baseline data and linking together diverse processes to determine possible interactions and needed extension and instructional needs. The corresponding poster includes a detailed list of projects associated with the grant, their corresponding principal investigators, and any recent advances. Some examples of project outcomes include the Water Machine that extracts phosphorous from waters with high nutrient content. Ammonia extraction from dairy wastewater. Enhanced composting using zeolites, pumice, biochar, and balanced carbon. Cover crops and corn silage as dual and double cropping. Hydrochar production from dairy manure and bioplastics. We are working on obtaining stakeholders’ input through diverse methods to help assess the needs of the industry and communities and guide the evolution of the research, extension, and education processes.

Future Plans

The project will continue to gather data and evolve. Collaborations and graduate student inquiries about inclusion in some projects are welcomed. We will offer updates at various conferences, including the next Waste to Worth.

Authors

Mario E. de Haro Martí, Extension Educator, University of Idaho Extension, Central District

Corresponding author email address

mdeharo@uidaho.edu

Additional authors

Mireille Chahine, Extension Dairy Specialist, Department of Animal, Veterinary and Food Science, University of Idaho

Linda Schott, Extension Nutrient and Waste Management Specialist,  Department of Soil and Water Systems, University of Idaho

Additional Information

ISAID Website: https://www.uidaho.edu/extension/nutrient-management/isaid

Facebook: https://www.facebook.com/uofiisaid

Instagram: https://www.instagram.com/uofiisaid/

Acknowledgements

This ISAID project is supported by USDA-NIFA SAS award #2020-69012-31

References

Berg, M., Meehan, M., and Scherer T. 2017. Environmental Implications of Excess Fertilizer and Manure on Water Quality. NM1281. https://www.ag.ndsu.edu/publications/environment-natural-resources/environmental-implications-of-excess-fertilizer-and-manure-on-water-quality

Leytem, A. B., Williams, P., Zuidema, S., Martinez, A., Chong, Y. L., Vincent, A., Vincent, A., et al. 2021. Cycling Phosphorus and Nitrogen through Cropping Systems in an Intensive Dairy Production Region. Agronomy, 11(5), 1005. MDPI AG. http://dx.doi.org/10.3390/agronomy11051005

Moore, A. and Ippolito, J. 2009. Dairy Manure Field Applications—How Much is Too Much? CIS1156. http://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1156.pdf

Sheffield, R. E., Ndegwa, P., Gamroth, M., and de Haro Martí, M. E. 2008. Odor Control Practices for Northwest Dairies. CIS1148. http://www.extension.uidaho.edu/publishing/pdf/CIS/CIS1148.pdf

USDA-NASS. 2021. Quick Stats. Retrieved 02 27, 2022, from National Agricultural Statistics Service: https://quickstats.nass.usda.gov

USEPA. 2015. Beneficial Uses of Manure and Environmental Protection. Fact Sheet. https://www.epa.gov/sites/default/files/2015-08/documents/beneficial_uses_of_manure_final_aug2015_1.pdf