Application of organic fertilizers increases antibiotics in soil

A brief summary of the manuscript, Use of commercial organic fertilizer increases the abundance of antibiotic resistance genes and antibiotics in soil by Zhou et al. (2016)

Key Points:

  • Residual antibiotics can persist in soil for months following the application of manure-based, commercial organic fertilizers.
  • Antimicrobial resistance and antibiotic residues decreased significantly over the first 60 days following fertilizer application but did not return to background levels until four months after application.

Continue reading “Application of organic fertilizers increases antibiotics in soil”

Poultry Digestion – Emerging Farm-Based Opportunity

While EPA AGSTAR has long supported the adoption of anaerobic digestion on dairies and swine farms, they have not historically focused on the use of anaerobic digestion on egg laying and other poultry facilities. This has been because the high solids and ammonia concentrations within the manure make anaerobic digestion in a slurry-based system problematic. Development of enhanced downstream ammonia and solids recovery systems is now allowing for effective digestion without ammonia toxicity. The process also generates dilution water, avoiding the need for fresh water consumption, and eliminating unwanted effluent that needs to be stored or disposed of to fields. The system produces high-value bio-based fertilizers. In this presentation, a commercial system located in Fort Recovery Ohio will be used to detail the process flow, its technologies, and the co-products sold.

Why Examine Anaerobic Digestion on Poultry Farms?

The purpose of this presentation is to supply a case study on a commercial poultry digestion project for production of combined heat and power as well as value-added organic nutrients on a 1M egg-layer facility in Ohio.

What did we do?

In this study we used commercial farm information to demonstrate that poultry digestion is feasible in regard to overcoming ammonia inhibition while fitting well into an existing egg-layer manure management system. Importantly, during the treatment process a significant portion of nutrients within the manure are concentrated for value-added sales, ammonia losses to the environment are reduced, and wastewater production is minimized due to recycle of effluent as dilution water.

What have we learned?

In this study, commercial data shows that ammonia and solids/salts levels that are potentially inhibitory to the biology of the digestion process can be controlled. The control is through a post-digestion treatment that includes ammonia stripping and recovery as ammonium sulfate as well as fine solids separation using a dissolved air flotation process with the addition of a polymer. The resulting treated effluent is sent back to the front of the digester as dilution water for the high solids poultry manure. The separated fine solids and the ammonium sulfate solution are dried using waste engine heat to produce a nutrient-rich fertilizer for off-farm sales. The stable anaerobic digestion process resulting from the control of potential inhibitors that might accumulate in the return water, if no post-treatment occurred, leads to production of a significant supply of electrical power for sales to the grid.

Demonstration at commercial scale shows the promise anaerobic digestion with post-digestion treatment and effluent recycle can play in a more sustainable poultry manure treatment system including managing nutrients for export out of impacted watersheds.

Future Plans

Future plans include continued work with industry in developing and/or providing extension capabilities around novel digestion and post-treatment processes for a variety of manures and on-farm situations. Expansion of such processes to poultry and other on-farm business plans will allow for improved reductions in wastewater production, concentrate nutrients for export out of impacted watersheds and do so within a positive economic business plan.

Authors

Craig Frear, Assistant Professor at Washington State University cfrear@wsu.edu

Quanbao Zhao, Project Engineer DVO Incorporated, Steve Dvorak, President DVO Incorporated

Additional information

Additional information about the corresponding author can be found at http://www.csanr.wsu.edu while information about the poultry project and the industry developer can be found at http://www.dvoinc.net. Numerous articles related to anaerobic digestion, nutrient recovery and separation technologies for climate, air, water and human health improvements can be found at the WSU website using their searchable articles function.

Acknowledgements

This research was supported by funding from USDA National Institute of Food and Agriculture, Contract #2012-6800219814; National Resources Conservation Service, Conservation Innovation Grants #69-3A75-10-152; and Biomass Research Funds from the WSU Agricultural Research Center. 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

 

Factors Affecting Household Use of Organic Fertilizer

Purpose         

New uses of manure can be win-win opportunities for livestock and poultry farmers, new users, and the environment. While there is increasing interest by crop farmers in using manure as a source of nutrients, another potential market is households. This study was conducted to look at factors that affect stated use of organic fertilizer, in order to enable producers and professionals to market this product to homeowners.

What did we do?

A survey of households in the Columbia, Missouri area was conducted in spring of 2014 in order to evaluate current lawn and garden practices with a goal of improving water quality in Hinkson Creek. The response rate was 44%. One question was whether they used an “organic fertilizer (OF, composted manure)”. About 26% of respondents said they used OF but when we excluded people who indicated it was not applicable because they either didn’t use fertilizer at all or used a lawn care company for fertilizer applications, the adoption rate was 32%. A logit regression with OF use as the dependent variable was conducted and results are presented below. The pseudo R2 for the regression was 0.21. Only statistically significant variables are discussed.

What have we learned?

People who indicated that they used soil tests, had installed rain gardens, or who had planted drought tolerant plants were more likely to use OF. These practices had been adopted by 12%, 33% and 3% of households, respectively.  People who fertilized their lawns three or more times per year were less likely to adopt OF.  Those who said they watered their lawns as needed to keep them green were more likely to use OF than people who watered infrequently or only in a drought.  Those who spent more than 10 hours (per month?) gardening were more likely to adopt than those spending less than 10 hours.  People who had heard of the term watershed and knew what it meant were more likely to use OF.  People aged 46-60, or over 60, were less likely to use OF than those in the 31-45 age range. People with household incomes over $75,000 as well as those earning under $25,000 were less likely to use OF than those in the $50-74,999 range. Those who strongly trusted information about water quality from environmental groups were more likely to use OF. Those who get information about fertilizer from the internet were more likely to use OF than those who obtained information from professionals or extension agents.  Users of OF thus seem to be younger, well-informed, serious gardeners that are also more concerned with environmental issues. 

Future Plans  

In the near term, dissemination of this research in a peer-reviewed journal is planned. Future research could examine the specific perceptions that homeowners have about this product to see whether marketing efforts can either counteract incorrect perceptions, or build on the perceived positive attributes of composted manure.

Authors

Laura McCann, Associate Professor at the University of Missouri McCannL@missouri.edu

Dong Won Shin, Graduate Research Assistant at the University of Missouri

Additional information             

Dr. Laura McCann, Associate Professor
212 Mumford Hall
Dept. of Agricultural and Applied Economics
Univ. of Missouri
Columbia, MO 65211

Acknowledgements      

This project was supported by National Integrated Water Quality Grant Program number 110.C (Award 2012-03652).

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Converting Manure, Food Wastes and Agricultural Production Wastes into Bio-Secure Fertilizer, feed, and/or beeding


Purpose

To find a way to completely eliminate bio-hazards in manure, food wastes, municipal sludge, and agricultural production wastes.

What did we do? 

We adapted existing dry extrusion technology to bio-hazard agricultural wastes. To test the hypothesis we developed [ Dry Extrusion Technology can be adapted to convert bio-degradable hazardous wastes into Bio-Secure class “A” fertilizer, feed, and/or bedding more economically, with less environmental impact, greater sustainability, and in less time with a smaller foot print]

Once we proved our Hypothesis we further developed the process to allow the technology to be utilized in a large stationary plant suitable for a large waste generator and in a portable plant that can be used to assist smaller waste generators, such as, most agricultural producers and smaller municipalities.

What have we learned? 

Our tests showed that we could validate our hypothesis by:

1) utilizing finely ground dry agricultural production wastes, mixed with the wet food and manure to reduce the moisture content of the wet wastes to a level compatible to the requirements of the dry extruder,
2) The Dry extruder effectively sterilized the wastes by high temperature, high pressure inside the extruder, and sudden drop in atmospheric pressure inside the cell walls of all the materials when exiting the Dry Extruder, thereby destroying the cell walls of not only the bio-mass materials but also of all micro organisms ova, and pathogens inside the final product.

Future Plans 

Develop new niche markets for agricultural waste generators by adding additional value to their wastes.

Authors

Joe E. Busby joebusby@wfeca.net 

Moses Braxton, Bill Ansley, William Andrews, Duncan Nesbit, and Dr. Carm Parkhurst

Acknowledgements

Insta Pro International, North Carolina State University

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.