This webinar discusses purposeful additives like nitrification inhibitors and biochar as well as accidental additives like copper sulfate from disinfecting foot baths and how these things can and should impact our decisions when applying manure. This presentation was originally broadcast on September 22, 2023.
If you have difficulties please see our webinar troubleshooting page. If you need to download a copy of a segment, submit a request. The embedded videos can be viewed full screen by clicking on the icon in the lower right corner.
This webinar will focus on theimportance of controlling these pests and thesafety of the livestock, the caretakers, and non-target animals and insectsaround the farm when doing so. This presentation was originally broadcast on June 16, 2023. Continue reading “Vector Control on Livestock Operations”
This webinar shares research and guidance on minimizing the risk of virus movementthrough manure and mortality management. This webinar also explains theroles technical advisors can play in response to an outbreak. This presentation originally broadcast on March 17, 2023. Continue reading “Moving Manure and Mortalities after Highly Pathogenic Avian Influenza”
There’s more to worker safety than just bumps and bruises. This webinar discusseson-farm injuriesrelated to manure and mortality handling and application as well aspotential toxic gas exposuresand how to minimize risks of each. This presentation was originally broadcast on October 21, 2022. Continue reading “Worker Safety in Animal Production Systems”
This webinar discusses the science and economics behind the use of worms in the processes of composting (i.e., vermicomposting) and treatment of wastewater and manure liquid waste stream (vermifiltration). This presentation was originally broadcast on May 20, 2022. Continue reading “Use of Vermifiltration as a Tool for Manure Management”
The purpose of this project was to collect local on-the-ground data to evaluate the effectiveness of different manure storage options installed on working farms in King County, Washington. Agricultural areas in King County receive over 40 inches of rain annually with most of it falling between the months of October through March. During this time, farms often store and compost their manure for spring and summer field application. Composting livestock manure and waste can produce a valuable resource for land managers. However, if managed improperly, manure leachate and runoff can contaminate ground and surface water resources posing a risk to humans and other wildlife.
The project aimed to collect data on water quality and manure quality under different solid manure storage options during the fall and winter months. During the project, we worked with two farms to monitor water quality and manure quality as well as held education and outreach events to engage with stakeholders about benefits and/or costs of adopting new manure management BMPs.
What Did We Do
For the project, we worked with two farms and established four manure storage areas on each including: a concrete slab with walls and a roof, concrete slab with walls and no roof, a compacted soil areas with a tarp cover, and a compacted soil area with no cover. The manure piles were managed by the farmer following common winter practices and were turned and added to 2-3 times per month. We monitored the temperature of the piles over time to assess their composting activity, although it was not a primary focus of our study.
We collected samples of the manure from each storage area during the project to monitor changes over time. To assess nutrient loss and pollution via a stormwater runoff pathway, we collected runoff from the concrete slabs. To assess nutrient loss and pollution via a leaching pathway, we collected soil samples, from under the compacted soil areas. This monitoring allowed us to compare the storage options. The study was conducted over the course of eight months from October 2020 through May 2021. Below are photos of our study setup. Stormwater runoff water quality samples were collected using an ISCO automated sampler that was programmed to grab samples during rain events that generated runoff from the manure piles. Soil and manure samples were collected on a monthly basis.
Figure 1. Manure storage treatments. From left to right: slab covered, slab uncovered, soil covered, and soil uncovered.Figure 2. Stormwater runoff collection system from the concrete slabs.
What Have We Learned
The project results support the conclusion that the covering of solid manure piles had positive environmental benefits. Covered manure piles stored on a concrete slab have less stormwater runoff with lower loads of nutrients in the leachate than uncovered manure piles on a concrete slab. The covering of dry manure piles stored on compacted soil surfaces reduced the leaching of nutrient, particularly nitrate and nitrite, from manure piles into the soil. It also created a better manure end-product by allowing higher heat values to be reached and creating a drier end product. Additionally, the
placement of manure on a non-permeable, concrete surface eliminated the leaching of manure nutrients below the piles. Covered manure piles, whether stored on a concrete slab or dirt, tended to be drier and have higher temperatures, which results in a better composted manure product.
The results of this study demonstrated that the type of animal species and pile management (how often the pile was turned or added to) also greatly affected the nutrient composition of the leachate. For instance, at Site A, there was higher TP in the manure, and thus higher TP in the runoff water quality and in soil samples.
Future Plans
Due to the short duration of the project, we pursued and were awarded additional funding to extend the project and expand the data set to allow for more robust statistical analysis and conclusions. Partner agencies and organizations as well as the farmers have expressed support and interest in continuing this research, and the project Steering Committee members have also expressed interest in further participation.
In future studies, we intend to try to better quantify the flow volumes from manure piles stored on slabs. In addition, we intend to better assess leaching potential underneath the manure piles stored on soil by using lysimeters to measure leachate volumes.
Authors
Presenting Author
Scarlett Graham, Conservation Research Specialist, Whatcom Conservation District
Corresponding Author
Laura Redmond, Landowner Incentive Program Coordinator, King Conservation District
laura.redmond@kingcd.org
Additional Authors
Addie Candib, Pacific Northwest Regional Director, American Farmland Trust
The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.
The most common waste management practice on hog farms in Eastern North Carolina are anaerobic lagoons. Lagoons contain three zones: [1] sludge storage zone at the bottom, [2] treatment zone for incoming manure in near the middle, and [3] a liquid (supernatant) storage zone at the top. The supernatant is land applied throughout the year as a nutrient source for growing crops on farms while the middle (treatment) zone is required to remain full to ensure effective treatment.
Considering the risk that hurricanes pose to North Carolina and the hog sector (particularly during late summer months), close lagoon management is critical to avoid risk of overflow or breach. Currently, regulations allow swine growers to lower the effluent level in their lagoons by applying part of the treatment zone effluent. Conditional to this allowance, however, is that the treatment zone contains at least 4-feet of depth that is sludge-free. This condition aims to ensure applied effluent is safe for application.
While this condition is helpful to reducing the risk of applying higher concentration of phosphorus, zinc, and copper to crops, many producers do not meet this condition due to excessive sludge buildup and would not be able to lower the lagoon level which poses a significant risk during intense rainfall events.
This study aims to quantify the impact of the sludge-free depth in the lagoon on the quality of supernatant during the drawdown period. Findings will help with precision nutrient application from swine manure and allow for further drawdown during necessary storm events.
What Did We Do
This study used a dataset representing 27 swine operations in Eastern North Carolina between 2016-2021. The dataset includes:
1. Monthly effluent/waste sampling analysis,
2. Annual sludge surveys, as well as
3. Lagoon level readings.
This dataset was analyzed using statistical methods to quantify the impact of seasonality (time of year), farm type (sow, finisher, or farrowing), and sludge level on nutrient concentration in the effluent.
Most growers use depth, in inches, to report volumes applied or available for storage. However, when comparing lagoons with different designs, this can be a challenge. As such, we developed two parameters to facilitate cross-farm, cross-lagoon comparisons. The first is “freeboard ratio” (FBR), which refers to the relative “fullness” of the storage zone in the lagoon. FBR value between 0 and 1 indicates the lagoon is currently within the storage volume (between start and stop pumps), values greater than 1 indicate the lagoon is in drawdown, and negative values indicate the lagoon level exceeded the storage volume and is currently in the rainfall/storm storage zone and must be lowered promptly. The equation used to calculate FBR is as follows:
TBR=
LFB-Lstart
, variables defined in Figure 2.
Lstop-Lstart
The second variable is “sludge level ratio” (SLR), which refers to the relative treatment volume available compared to the 50% treatment volume required. SLR values greater than 1 indicate that more than 50% of the treatment volume is sludge-free in the lagoon and therefore drawdown can proceed, and no sludge removal is necessary. SLR values less than 1 indicate that less than 50% of the treatment volume is available and drawdown might not be feasible. The equation used to calculate SLR is as follows:
SLR=
Lsludge-Lstop
, variables defined in Figure 2.
L0.5. Trt-Lstop
Figure 2. Anaerobic lagoon zones used to calculate study parameters FBR and SLR
What Have We Learned
In analyzing the dataset we observed that only 2% of the samples were collected while the lagoon level exceeded storage level (above the start-pump level). This suggests the majority of studied operations were successful in managing effluent despite the wet years observed between 2016 and 2021. By comparison, 22% of the samples were collected while the lagoon was at a draw-down state (the entire storage volume is empty and the treatment zone is partially emptied).
Additionally, 38% of the samples collected were associated with lagoons that needed sludge removal (SLR < 1). These results are summarized in Table 1, with 12% of samples collected from lagoons in drawdown (FBR > 1) and in need of sludge removal (SLR < 1). This latter group of samples represent the primary concern for lagoon drawdown.
Table 1. Summary of FBR and SLR Interactions
Lagoon Sample Class
Sludge Level Ratio (SLR)
No Removal
Removal Due
Freeboard Ratio (FBR)
Above stop-pump
40%
26%
In drawdown
22%
12%
The season was a significant predictor of the lagoon level (p < 0.001), with the late irrigation season (July – Sept) showing the least effluent volume in the lagoon. On average, 91% of the storage volume was unoccupied. This compares to the winter months (Oct – Feb) and the early irrigation season (Mar – June) with 81 and 69% of the storage volume empty, respectively.
For all seasons the mean ratio of N : P2O5 : K2O in the supernatant is 4 : 1 : 8.2. There was less variability for N and K content with the lagoon level than for P, Zn, and Cu. This can be attributed to the N and K being primarily in soluble forms in the lagoon supernatant compared to P2O5, Zn and Cu which are mostly bound to solids.
The analysis showed a greater variability in Zn, Cu, and P levels with changes in solid concentration in the supernatant as well as the amount of suspended solids as a result of wind or active lagoon agitation/sludge removal.
Overall, the results showed lagoon drawdown and existing sludge reserves to have a combined effect on nutrient concentrations in the supernatant, particularly for phosphorus.
Future Plans
This study will inform ongoing research to predict temporal variability in nutrient content in the lagoon due to weather, operational decisions, and time of year. Near term, these observations will help guide application rates to ensure P levels meet crop demands particularly during late-season drawdown without significantly increasing soil P levels. In addition, this work will be part of a larger study to predict the performance of anaerobic treatment lagoons under future climate conditions.
Authors
Presenting Author:
Carly Graves, Graduate Research Assistant, North Carolina State University
Corresponding Author:
Dr. Mahmoud Sharara, Assistant Professor & Waste Management Extension Specialist, North Carolina State University
msharar@ncsu.edu
Acknowledgements
Thank you to Smithfield Foods, Inc. for funding this research and providing datasets of sludge surveys.
The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.
Manure lagoon systems are designed to hold and treat animal farm wastewater for a predetermined period and remain popular in many livestock farms. If the lagoon is properly designed and built, many years can go by without any significant maintenance requirements outside of water management, pumps and valves. Depending on the capacity and maintenance, additional manure solid removal is often required to reduce the amount of manure solids entering the lagoon storage. When excessive solids build-up or sludge was found, significant odor and low quality/quantity of flushing water would be the issues.
This study documents experience to prepare for and complete land application of lagoon effluent with heavy solids from a flush dairy lagoon in central Missouri. The free stall barn uses mattress bedding with supplemental cedar shavings and houses 140-160 lactating cows. Preparation included measuring lagoon sludge depth and lab analysis of sludge characteristics and scouting for crop fields for land application prior to contacting contractors for a bidding process. A contractor team utilized specialized equipment to dilute, agitate, pump and land apply approximately 8 million gallons of diluted lagoon solids in less than nine working days. Lagoon effluent was sampled throughout the process to monitor the mass of nutrients applied to specific plots of land. For effective lagoon solids removal and land application, proper preparation, specialty equipment and trained professional, timing of the crop fields, and adequate field working days are critical. Simple, non-mechanical technologies are available for even small to midsize dairy farms to reduce the cost of lagoon maintenance by preventing the bulk of solids from entering the lagoon.
What Did We Do?
We documented the process of lagoon solids removal for land application, considering the preparation (sludge and effluent sampling), specialty equipment and trained professionals, timing of the crop fields, and adequate field working days. The barn was flushed two to three times per day, with three times per day being typical. There was, at one time, an elevated screen that helped remove the large solids from the flush, but the screen system fell into disrepair several years ago and was abandoned. Solids in the lagoon were agitated and pumped out from May 21, 2020, through June 8, 2020, Figures 1 and 2. A total of 8 million gallons over 280 acres was applied to fields further away from the lagoon, including neighbor’s crop fields that were 1.5 miles away. Equipment needs and specifications were documented (Canter et al., 2021) and being prepared for an Extension publication.
Figure 1. PTO-drive lagoon agitators and agitation boat in operation.Figure 2. A dilution pump was used to pump water from the nearby lake (left) to the dairy lagoon (right) with agitation boat and lagoon agitation working in the background.
Daily lagoon effluent samples were taken multiple samples throughout the day on June 2 to gauge the consistency of nutrient concentrations. Results suggest that once completely mixed via agitation, the applied nutrient concentration from a single sample is a reliable estimate within a working day if the moisture content is consistent. The initial slurry had a 10-13 percent solids content, so a significant amount of dilution water was needed to dilute the solids content to the target range. The exact amount of dilution water used was unknown. Figure 3 shows the concentration and moisture data. In general, the higher the moisture content (less solids) in the slurry samples, the higher the concentrations of the important manure nutrients are. The team evaluated potential technologies based on historical experience and first-person interviews. A pull-plug sediment basin (PPSB) was selected after reviewing cost and visiting with a farmer who operated a PPSB and was satisfied with the overall operation and performance (Canter et al., 2021). The application rate of important manure nutrients did show variation during the several days of land application, suggesting an improvement to the real-time effluent nutrient measurement and land application rate adjustment could be improved to provide more consistent nutrients to the crop fields.
Figure 3. Concentrations and moisture content of slurry samples from the lagoon.
What Have We Learned?
Manure management can be a burden for animal feeding operations, which can potentially become a significant threat to the profitability and management of farms if not proactively managed. Owners would be well-advised to survey their lagoon yearly to track solid inventory and plan ahead for the amount of land needed for solids application. Proper solids removal from the lagoon, particularly if regular and effective solids removal has been neglected, requires specialized equipment to reduce liquid supernatant on an annual or semiannual basis. There can be significant variability of nutrient concentration and resulting mass applied. Testing for nutrient concentrations in the lagoon, whether supernatant or sludge, or both, can be misleading due to variance in concentrations due to moisture content as the applicators dilute and concentrate the solids during the land application process.
Daily sampling during land application could help but may not be practical due to the analysis time generally required by labs (5-10 business days). Sensors and probes are available that return instantaneous values and have been used in municipal and industrial wastewater treatment for over a decade. Companies have offered integrated sensors for land application equipment, combining them with their GPS and flow control system to give a complete and accurate summary of nutrient application. Simple, non-mechanical technologies are available for even small to midsize dairy farms to reduce the cost of lagoon maintenance by preventing the bulk of non-degradable solids from entering the lagoon. Implementation of a coarse solids separation system such as the PPSB could significantly reduce the long-term cost of manure management by allowing the operator to use more common equipment (e.g., a loader and spreader) to remove solids from the manure management system.
Future Plans
Continuous monitoring of the lagoon sludge level at a minimum of annual basis is needed to closely monitor the lagoon solid accumulation and performance of the PPSB. The authors are collaborating with NRCS team to improve the PPSB and ways to monitor the lagoon sludge level.
Authors
Teng Lim, Extension Professor, Agricultural Systems Technology, University of Missouri
Corresponding author email address
Limt@missouri.edu
Additional authors
Timothy Canter, Extension Specialist, Agricultural Systems Technology, University of Missouri
Joseph Zulovich, Extension Assistant Professor, Agricultural Systems Technology, University of Missouri
Additional Information
Canter, T., Lim, T.-T., and J. A. Zulovich. 2021. Field Experience of Removing and Land Application of Dairy Lagoon Solids. In International Symposium on Animal Environment and Welfare. Rongchang, Chongqing, China.
Lim, T.-T. 2022. Lagoon Solids Removal, Lessons Learned. Cleanout for Lagoons and Anaerobic Digesters, Jan 21, 2022. Webinar of Livestock and Poultry Environmental Learning Community (LPELC). https://lpelc.org/cleanout-for-lagoons-and-anaerobic-digesters/
Canter, T., Lim, T.-T., Chockley, T. 2021. Considerations of Pull-Plug Sedimentation Basin for Dairy Manure Management. University of Missouri Extension Publication. Retrieved September 25, 2021. https://extension.missouri.edu/publications/eq302.
Acknowledgements
USDA NIFA, Water for Food Production Systems Program A9101, for supporting the project. It is titled “Management of Nutrients for Reuse”, a multi-faceted project that involves professionals from the University of Arkansas, University of Nebraska, Colorado School of Mines and Metallurgy, Case Western University, and University of Missouri.
Joe Harrison, Professor, Livestock Nutrient Management program, Washington State University
Gilbert Miito, Postdoctoral Fellow, Agricultural Systems Technology, University of Missouri
Richard Stowell, Biological Systems Engineering, University of Nebraska
Farm crew and custom applicator team for their help.
Many small and mid-sized dairy farms use flush systems for manure removal due to reduced chore time and increased barn cleanliness. Often, flush systems require greater attention to onsite water management and frequent lagoon maintenance. While anaerobic lagoons provide some digestion of manure solids and sludge storage, solids removal may help increase lagoon capacity and reduce costly lagoon sludge removal. A pull-plug sedimentation basin (PPSB) is a passive solids removal system that can reduce the operational time and cost of the overall manure management system by acting as both a sedimentation basin and pre-lagoon solids filter system.
Larger, denser particles accumulate on the basin floor, while buoyant particles (e.g., undigested fiber, waste forage, bedding, etc.) form a floating mat on the surface. The mat acts as a natural filter and retains some of the solids from the waste stream. The PPSB was developed as part of a collaborative effort between USDA NRCS and small dairy producers in Missouri. This abstract provides background and basic information on the PPSB, while more performance evaluation of the system based on nutrient retention, costs, and maintenance and operational considerations can be found in a University of Missouri Extension publication Eq302 (Canter et al., 2021).
What Did We Do?
Design details of a working PPSB were documented, and performance evaluation was conducted based on grab samples of the flush and PPSB locations. Critical design considerations for the PPSB including design, hydraulic loading, location of the pull-plug location, and construction details were reported in the Extension publication (Canter et al., 2021). The concrete entry ramp into the PPSB should have a maximum slope of 12:1 (or 5 degrees) (Figure 1) to minimize wheel slippage and potential for equipment overturns. The example provided in Figure 1 is of a typical PPSB design that serves a herd of ~150 milking cows with a single-flush volume of ~7,000 gallons but also represents the smallest recommended size of the system. A minimum depth of 6 feet is needed to keep settling solids out of the discharge stream.
Figure 1. Profile and plan views of typical PPSB (dimensions in feet).
Detailed discussion of the advantages and disadvantages of the PPSB system was reported in the Extension publication. Relatively little maintenance has been reported, while the pull-plug is the only moving part and may need to be replaced if damaged during cleaning or degradation, Figures 2 and 3. Details such as the management and sampling and analysis were discussed, and a case study was conducted to document the information of a PPSB system of a 120-hd dairy farm in Missouri, with a flush system and sand lane, as well as a performance evaluation.
Figure 2. A PPSB system in operation at a dairy farm.Figure 3. PPSB with liquid discharge pipe, after manure solid was removed.
What Have We Learned?
The owners are satisfied with the performance of the PPSB, which is considered a low-maintenance, low-technology option to efficiently manage manure solids within a flush system. The primary benefit of the PPSB is a reduction in time spent agitating and removing solids/sludge in the lagoon. When less capacity in the lagoon is used for solids treatment and storage, there is more room to store water and longer intervals between repairing or unclogging pumps and the water system. There are typically three to four clean-out periods per year, depending on PPSB and herd sizes and other factors.
The primary benefit of the PPSB is the removal of manure solids using a low maintenance system, resulting in longer intervals between lagoon agitation and land applications. Approximately 23,450 cubic feet of manure solids were prevented from entering the lagoon each year, along with 6,454 pounds of nitrogen (438 pounds as ammonia-nitrogen) and 2,415 pounds of phosphorous. These represent 13 percent and 28 percent of manure-based nitrogen and phosphorous, respectively, being retained in the PPSB.
Future Plans
Additional sampling just before or during clean-out is necessary for a more accurate performance determination. PPSB installed at larger dairy farms, and those using different bedding should be evaluated for performance and documented the cost savings as compared with other popular solid separation systems.
Authors
Teng Lim, Extension Professor, Agricultural Systems Technology, University of Missouri
Corresponding author email address
Limt@missouri.edu
Additional authors
Timothy Canter, Extension Specialist, Agricultural Systems Technology, University of Missouri
Troy Chockley, Environmental Engineer, Natural Resource Conservation Service, United States Department of Agriculture
Additional Information
Canter, T., T.-T. Lim, and T. Chockley. 2021. Considerations of pull-plug sedimentation basin for dairy manure management. University of Missouri Extension. https://extension.missouri.edu/eq302
Acknowledgements
USDA NIFA, Water for Food Production Systems Program A9101, for supporting the project. It is titled “Management of Nutrients for Reuse”, a multi-faceted project that involves professionals from the University of Arkansas, University of Nebraska, Colorado School of Mines and Metallurgy, Case Western University, and University of Missouri.
Joseph Zulovich, Agricultural Systems Technology, University of Missouri
Richard Stowell, Biological Systems Engineering, University of Nebraska
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.