Natural Resource Conservation Service (NRCS) Manure Related Conservation Innovation Grants (CIG)

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

A number of the manure related Conservation Innovation Grants (CIG) have been successful.  Several feed management related projects have been major successes under the CIG program.  Other successful projects have dealt with such technologies as anaerobic digesters; community digesters; environmental credit trading; lagoon management; manure to energy generation; alternative litter sources, storage, and handling; and pathogen, odor, and emissions mitigation, to name just a few. 

The presentation will provide specific numbers of projects and funding per year, and information about actual projects that NRCS considers to have been successful. 

What Is the Purpose of the CIG Grant Program?

Glenn Carpenter came to Natural Resources Conservation Service as a Senior Economist in December of 2001 with the Animal Husbandry and Clean Water Division.  In May, 2004 he became the agency’s National Leader for Animal Husbandry, with that Division.  In 2010 his position was moved to the Ecological Sciences Division.  Much of his work with NRCS has been related to the animal waste issue and the agency’s interaction with EPA over the CAFO Rule. 

Glenn has three degrees in Poultry Science from Michigan State University.  Prior to joining NRCS, Glenn served in Extension Poultry positions at two universities.

The 2002 Farm Bill created a mechanism under the Environmental Quality Incentives Program (EQIP) for a program of Conservation Innovation Grants (CIG).  These grants were “…intended to stimulate innovative approaches to leveraging Federal investment in environmental enhancement and protection, in conjunction with agricultural production…”  The grants were to provide a mechanism for funding projects to aid in technology development and transfer.    The granting program actually began in 2004, and has continued since that time.

What Did We Do?

By statute, the USDA Natural Resources Conservation Service cannot do research.  Because of this, and because the interest of NRCS lies in directly assisting farmers and ranchers in the adoption of technologies that will benefit conservation, projects funded under this program must be in the field demonstration or tool application stages.  Since the initial grant funding cycle in 2004, NRCS has provided funding through EQIP every year.  To date nearly 500 grants have been awarded, with total funding in excess of $180 million. 

A large share of these CIGs has been strongly animal, and/or manure related.  Almost 25 percent of the total number of grants has been animal related, and these grants have received slightly over 26 percent of the total dollars.  About 19 percent of the total grants have been manure related and these have received about 22 percent of the funding.  Those animal related grants that are not manure related largely deal with range and pasture systems.

What Have We Learned?

Several feed management related projects have been major successes under the CIG program.  Other successful projects have dealt with such technologies as anaerobic digesters; community digesters; environmental credit trading; lagoon management; manure-to-energy generation; alternative litter sources, litter storage, and handling; and pathogen, odor, and emissions mitigation from manure, to name just a few. 

The number and variety of funded projects has covered a wide range of geographic areas and technical  innovations.  A multistate feed management project resulted in training programs, a tech note for NRCS, and many fact sheets and other materials that are available on Livestock and Poultry Environmental Learning Center webpage.   Another major grant demonstrated the effectiveness of filter strips and other vegetated treatment areas on mitigating manure runoff from cattle feedlots.  Utilizing high pressure injection of manure, a Pennsylvania project demonstrated a decrease in odor and runoff while also preserving nitrogen.  Several projects have successfully demonstrated the effects of precision feeding of dairy cattle to show the change in manure nutrients.  Projects have demonstrated the effectiveness of different tillage systems and technologies on manure nutrient runoff.  Other projects have dealt with innovative waste-to-energy technologies, or waste to value-added-product creation.   These are just a few of the number and variety of projects funded  through the Conservation Innovation Grants program.

Future Plans

The success of the CIG program since 2004, both in numbers of projects and in innovative technologies and tools applied, demonstrates that the program is important to agriculture in the U.S.  NRCS has shown its support by continually funding the program, and by making additional moneys available for special targeted CIGinitiatives.

Authors

Glenn H. Carpenter, National Leader, Animal Husbandry, USDA Natural Resources Conservation Service glenn.carpenter@wdc.usda.gov

Gregorio Cruz, CIG Program Manager, NRCS, Rosslyn, VA;  William Reck, Environmental Engineer,  NRCS, Greensboro, NC;  Jeffrey Porter, Environmental Engineer, NRCS, Greensboro, NC; Cherie Lafleur, Environmental Engineer, NRCS, Ft Worth, TX; Sally Bredeweg, Environmental Engineer, NRCS, Portland, OR; Harbans Lal, Environmenal Engineer, NRCS, Portland, OR; Greg Zwicke, Environmenatl Engineer, NRCS, Ft Collins, CO

Additional Information

NRCS Conservation Innovation Grant webpage at:  http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/cig/

Acknowledgements

United States Department of Agriculture, Natural Resources Conservation Service, Conservation Innovation Grants Program

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

 

Fate of Barbiturates and Non-steroidal Anti-inflammatory Drugs During Carcass Composting

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Are We Concerned About Drug Residues in Animal Mortality Compost?

With disease issues, the decline of the rendering industry, a ban on use of downer cows for food, and rules to halt horse slaughter, environmentally safe and sound practices for disposal of horses and other livestock mortalities are limited. Improper disposal of carcasses containing veterinary drugs has resulted in the death of domestic animals and wildlife. Composting of carcasses has been performed successfully to reduce pathogens, nutrient release, and biosecurity risks. However, there is concern that drugs used in the livestock industry, as feed additives and veterinary therapies do not degrade readily and will persist in compost or leachate, threatening environmental exposure to wildlife, domestic animals and humans.

Two classes of drugs commonly used in the livestock and horse industries include barbiturates for euthanasia and non-steroidal anti-inflammatory drugs (NSAID) for relief of pain and inflammation. Sodium pentobarbital (a barbiturate) and phenylbutazone (an NSAID) concentrations in liver, compost, effluent and leachate were analyzed in two separate horse carcass compost piles in two separate years. Horse liver samples were also buried in 3 feet of loose soil in the first year and drug concentrations were assessed over time.

What did we do?

Year 1- On 9/22/09 a 6 x 6 m piece of 10 mil plastic sheeting was laid on bare soil with a 2% slope, at the edge of Cornell University’s compost site in Ithaca, NY. Water was poured on the plastic to check the direction of flow. A hole was dug at the low end of the pad, under the plastic, large enough to fit a 76 l galvanized garbage can. A stainless steel canner was placed in the garbage can to collect effluent. A hole was cut in the plastic over the canner for collection. A 0.6 m high base (3.7 x 3.7 m) of coarse carbon material (woodchips) was laid on the plastic. A 27 year old Appaloosa mare, weighing approximately 455 kg that had been dosed with 1 gram phenylbutazone at midnight on 9/22/09 and again at 8:00 am was led onto the base and euthanized for severe lameness by a qualified veterinarian with 120 ml Fatal Plus® solution (active ingredient 390 mg/ml Pentobarbital Sodium). After the horse had been euthanized and the veterinarian ensured there were no signs of life, the carcass was maneuvered onto the wood chips with the head on the upward slope of the pad. The liver was removed from the horse and cut into 48 pieces, each weighing approximately 100 grams, and nylon mesh bags were then placed in whiffle balls. A 2 m length of nylon twine was attached to each ball. Twenty-three balls were inserted in the horse’s gut cavity and 22 balls were placed in a 1 m hole in the ground (burial hole) which was dug approximately 1.5 m from the pad. Pieces of the intestine and some blood were also placed in the hole to help mimic the presence of a carcass. The remaining 3 nylon mesh bags with liver were packaged for delivery to Cornell University’s Animal Health Diagnostic Center (AHDC) to determine initial NSAID and barbiturates concentrations. Two Hobo U12 data loggers with 4 temperature probes each were set up to record hourly temperatures. Five of the probes were placed in the compost pile: under the horse’s chest, in the horse’s hind gut, in the horse’s chest cavity, under the horse’s spine and under the horse’s right hind quarter. Two of the probes were placed in the burial hole and one probe was left out to record ambient temperature. The hole was covered with loose soil. The horse was covered with woodchips so that the pile was approximately 1.8 m high. The plastic liner was tightened by rolling it over and under wooden fence posts.

Year 2- In year 1, the collection of “leachate” included precipitation that diluted the leachate. In year 2, to target only the liquids that leached out of the horse and through the pile, two 3 m long troughs with a 1% slope were built out of 15 and 10 cm diameter PVC pipe attached to 5 x 15 cm untreated lumber. The troughs were placed on the pad from the centerline to the edge of the pile end-to-end with slopes going toward the outside of the pile. Leachate drained via gravity into 2-liter polyethylene bottles attached to the troughs. The exposed ends of the troughs were covered with 1 m length of aluminum flashing to keep rainwater out of the collection bottles.

On 8/10/10 the leachate collection troughs were laid on bare soil with a 2% slope at the edge of Cornell University’s compost site in Ithaca, NY. A 0.6 m high base (3.7 x 3.7 m) of coarse carbon material (woodchips) was laid on top of the troughs. A 22 year old horse weighing approximately 590 kg, that had been dosed with 1 gram phenylbutazone at midnight on 08/10/10 and again at 7:30 am, was led onto the base and euthanized by a qualified veterinarian with 300 mg xylazine as a sedative, then with 120 ml Fatal Plus® solution (active ingredient 390 mg/ml Pentobarbital Sodium). After the horse had been euthanized and the veterinarian ensured there were no signs of life, the carcass was maneuvered on the wood chips with the head on the upward slope of the pad. The veterinarian took 4 tubes of blood from a vein in the nose and a vein in the front leg of the horse in heparinized Vacutainer® tubes for initial concentrations of pentobarbital and phenylbutazone. Twenty-six whiffle balls that had been pre-filled with wood chips (the base material of the compost pile) were placed such that they would be under the horse and liquids coming from the horse would be absorbed by the chips inside the balls, as well as in the surrounding base material, while the excess would drain down the leachate collection troughs and be captured in the 2 liter bottles at the end of the troughs (Figure 1). One Hobo U12 data logger with 4 temperature probes was set up to record hourly temperatures. The probes were placed under the horse’s neck and rump, on top of the horse’s abdomen, and one was left out to record ambient temperature. The horse was covered with woodchips so that the pile was approximately 1.8 m high. Additional woodchips were added to the pile on August 13 and the pile was covered with a breathable polyester compost cover to collect only what was leaching from the animal.

Figure 1 Cross-section of horse compost pile showing placement of leachate collection troughs and woodchip-filled whiffle balls.

On 8/10/10 a 0.6 m high base (3.5 x 3.5 m) of coarse carbon material was laid near the horse compost pile. A 455 kg 3 year, 7 month old, 2nd lactation Holstein cow was euthanized, due to a lung abscess, in the same manner as the horse (300 mg xylazine, followed by 120 ml Fatal Plus®). Four tubes of blood were withdrawn from her milk vein as described for the horse. One Hobo U12 data logger with 4 temperature probes was set up to record hourly temperatures. The probes were placed under the cow’s udder and rear leg, on top of the cow’s back, and one was left out to record ambient temperature. The cow was then covered with woodchips so that the pile was approximately 1.8 m high. Additional woodchips were added to the pile the following day before the pile was covered with a compost cover.

What did we learn?

In year one, phenylbutazone concentrations in the liver of the horse were undetectable (< 10 ppb) by 20 days of composting or burial in loose soil and were undetectable in effluent from the pile at the time of first sampling on day 6. Pentobarbital concentrations were undetectable (< 10 ppb) in liver samples retrieved from both the compost pile and loose soil by day 83. Rate of decay was faster in the soil, exponentially decreasing by 18% per day, with a half-life of 3 days, than in the compost pile where there was a 2% decrease per day and a half-life of 31 days, but occurred at the same rate of 1% and a half-life between 55 and 67 mesophilic degree days when calculated on the number of mesophilic degree days to which it was exposed. This suggests that breakdown of pentobarbital is not initiated by the heat of composting, but by the biological degradation that occurs in both soil and compost at mesophilic temperatures. Pentobarbital in the effluent decreased by 20% per day with a half-life of 3.1 days but was still detectable (0.1 ppm) at 223 days of composting.

In year 2, phenylbutazone was not detected in any of the samples analyzed (compost and leachate) other than blood taken from the jugular vein of the horse immediately after euthanasia. Pentobarbital concentrations in the compost were still detectable after 224 days of composting, but had decreased from 79.2 (initial) to 5.8 ppm. Pentobarbital in leachate was 2.2 ppm at day 56 of composting, after which no additional fluids leached into the leachate collection containers.  Rate of decay in the leachate was 35.2% per day with a half-life of 1.6 days. When managed properly, composting will deter domestic and wild animals from scavenging on treated carcasses while they contain the highest drug concentrations providing an effective means of disposal of euthanized and/or NSAID treated livestock. The resulting compost contains either no or very low concentrations of both NSAIDs and barbiturates rendering it safe for use in agriculture.

Barbiturate poisoning in domestic and wild animals has occurred from ingestion of tissue from animals euthanized with pentobarbital. Many of the reported cases have occurred from direct feeding on improperly disposed livestock in which little or no degradation or biotransformation of pentobarbital has occurred.  During the time period in which carcasses would be desirable to domestic and wild animals as a food source, composting creates sufficient heat to deter them from digging in to the pile. In addition, when covered properly, the smell of decomposition is minimized, also reducing attraction. The diverse community of microorganisms in the compost pile aids in the degradation and biotransformation of pentobarbital, especially after the thermophilic phase of composting is over. Properly implemented composting, as a means of disposal of euthanized or NSAID treated livestock, will deter domestic and wild animals from scavenging for carcasses when they contain the highest drug concentrations. The resulting compost contains either no or very low concentrations of either NSAIDs or barbiturates, rendering the compost safe for use in agriculture.

Future Plans

Education and implementation work continues in this area nationally and internationally. A 5th International Symposium on Depopulation and Disposal of Livestock is in the planning stages. A study on the Fate of anthelmintics (drugs that expel parasitic worms from the body) in livestock manure has just been completed.

Authors

Jean Bonhotal,  Mary Schwarz,  Cornell University, Cornell Waste Management Institute, Ithaca, NY

Karyn Bischoff, Joseph G Ebel, Jr. Cornell University, College of Veterinary Medicine, Ithaca, NY

Additional Information

Visit Cornell Waste Management Institute Web site: http://cwmi.css.cornell.edu/mortality.htm

Trends in Animal & Veterinary Sciences Journal article http://cwmi.css.cornell.edu/fate.pdf

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Pathogen Reduction in Anaerobic Digestion of Manure

Benefits of Anaerobic Digestion of Manure in Reducing Pathogens

Manure is a biologically active material that hosts and supports many microorganisms and thus can seldom be considered “pathogen free.” Certain manure handling techniques and methods, however, can limit the production and multiplication of such pathogens. Common sense must be used when making manure handling decisions. Pathogens are microbes such as bacteria, viruses, protozoa, and other organisms that cause disease. These pathogens persist commonly in animal manures. For more information about pathogens and zoonotic pathogens, see Pathogens and Potential Risks Related to Livestock or Poultry Manure. A list of animal related microorganisms (including some that are pathogens) are listed in Table 1.

Table 1. Animal Related Microorganisms
Fecal coliforms (an indicator bacteria, not all coliforms are pathogenic)
Salmonella spp. (pathogen)
Generic E. coli (not all E. coli are pathogens), including O157:H7 (pathogen)
Enterococci (not generally considered pathogenic)
Listeria (pathogen)
Clostridium (pathogen)
Mycobacterium paratuberculosis (MAP or Johne’s) (pathogen)
Enterovirus (pathogen)
Campylobacter (pathogen)
Cryptosporidium (C. parvum is the only one related to animal manure that is considered pathogenic)
Bovine Spongiform Encephalopathy (BSE) (The prions that cause BSE are not a true pathogen, but are considered an “infectious agent”)

Excessive or careless land application of manure and livestock facility runoff can contaminate surface water. This manure laden runoff can pose significant risk to human and animal health. Stored or fresh manure can be applied to land with minimal reduction of harmful pathogens, as some microorganisms can persist for long periods outside an animal’s body.

Treatment through anaerobic digestion can greatly reduce the number of pathogens within the manure and therefore limit the number of pathogens entering the environment. Anaerobic digestion (AD) of manure has a pathogen reducing effect with as much as 95-98% of common pathogens eliminated in mesophillic (~ 100 degrees Fahrenheit) digesters. The reduction in pathogens has the potential to be of benefit for: manure application in impaired watersheds when trying to manage certain pathogens such as Mycobacterium paratuberculosis (MAP or Johne’s) or salmonella, and when considering a community- based anaerobic digester where manure from multiple farms is combined, treated, and AD solids and AD effluent returned back to the farms.

Supporting Research-What We’ve Learned

There is a growing body of research which demonstrates the anaerobic digestion process can vastly reduce if not eliminate the concentration or presence of numerous organisms. Current research in this area is summarized below in Table 2.

Table 2. Potential for microbial (including pathogen) and infectious agent reduction by anaerobic digestion
Microbes Reduced By Anaerobic Digestion Microbes Not Reduced By Anaerobic Digestion
Salmonella Bovine Spongiform Encephalopathy (BSE) (Infectious agent–not a microbe)
Generic Escherichia coli  
Escherichia coli O157:H7  
Mycobacterium paratuberculosis (Johne’s)  
Bovine enterovirus (BEV)  
Enterovirus  
Fecal coliform  
Cryptosporidium  

Anaerobic digestion of manure has been shown to reduce the Johne’s-causing organism, Mycobacterium avium a subspecies of paratuberculosis. Thermophilic digesters operating at 135 degrees F. have shown complete elimination of Johne’s bacteria, while digesters operating at 99 degrees F with a 20-day retention time have demonstrated significant reduction [3]. Other potentially harmful pathogens to humans include Escherichia coli O157:H7, Salmonella, and the protozoan parasite Cryptosporidium parvum. These bacteria and protozoa have all been reduced in number of viable and infectious organisms after passing through a digester. Pathogen reduction of 95% is possible with a 20-day retention time under mesophilic conditions (95-105 degrees F.) with a digester [3].

Anaerobic digestion under mesophilic or thermophilic conditions has not been shown to reduce or eliminate Bovine Spongiform Encephalopathy (BSE), or Mad Cow Disease. Although little is known about this disease, it is accepted that the protein-infecting prions are resistant to heat. Even thermophilic conditions (135 degrees F.) are not sufficient to destroy BSE prions [3].

In a study in New York state, samples were taken from a plug-flow digester over a 14-month period and tested for fecal coliform and Mycobacterium avium paratuberculosis (MAP), or Johne’s disease. It was found (see Table 3) that anaerobic digestion has the potential to reduce the number of fecal indicator bacteria in dairy effluent, including in this study, by 100% reduction of MAP CFU/gram. The substantial reduction of pathogen concentrations led the authors to recommend anaerobic digestion of dairy manure when concentration of pathogens is a concern [4].

Table 3. Pathogen results from dairy manure treatment
  Fecal coliform CFU/Gram MAP CFU/Gram
Raw Manure 3,836,000 20,640
Digested Effluent 3,400 136
Wright et al. 2001

In a study conducted by Washington State University on two operating anaerobic digesters in Oregon (2004), pre-digested and post-digested samples were taken bi-weekly, for six sampling events. Samples were obtained from: manure prior to the AD system, and solids and liquids post-AD. The design of the two digesters was different: one was a plug-flow and the other, a continuous mix, each operating at 100 degrees F. and with expected retention times of ~ 21 days and 24 hours, respectively. Specific organisms selected for evaluation were: Salmonella, Generic E. coli (including 0157:H7), enterococci, Mycobacterium paratuberculosis (Johne’s), and enterovirus.

 

Figure 1. Generic E.Coli concentration in anaerobic digester samples


 

Figure 2. Enterococci concentration in anaerobic digester samples


The data indicated reductions in fecal indicator bacterial concentration was > 98% (generic E. coli, enterococci, and enterovirus) in most cases (see figure 1 and 2). While the detection of Mycobacterium paratuberculosis was reduced in post digested samples, greater than 50% of samples had detectable levels. The data from this study suggests that AD treatment of dairy manure does not completly remove all biosecurity hazards [2].

Additional Resources

Bibliography

  1. Spiehs, Mindy; Goyal, Sagar. Best Management Practices for Pathogen Control in Manure Management Systems. University of Minnesota Extension. 2007.
  2. Harrison, J.H., D. Hancock, M. Gamroth, D. Davidson, J.L. Oaks, J. Evermann, and T. Nennich. 2005. Evaluation of the pathogen reduction from plug flow and continuous feed anaerobic digesters. Symposium – State of the Science Animal Manure and Waste Management. San Antonio, TX. Jan. 5-7
  3. [3.0][3.1][3.2]Topper, Patrick; Graves, Robert; Richard, Thomas. The Fate of Nutrients and Pathogens during Anaerobic Digestion of Dairy Manure. Penn State Cooperative Extension. Agriculture and Biological Engineering. Extension Bulletin. 2006.
  4. Wright, P. E., S. F. Inglis, S. M. Stehman, and J. Bonhotal. “Reduction of selected pathogens in anaerobic digestion.” 5th Annual NYSERDA Innovations in Agriculture Conference (2001): 1-11.
  5. “Pathogen Overview.” Information Collection Rule. US Environmental Protection Agency, 10 Apr. 2009. Web. 7 Dec. 2009.

Contributors to this Article

Authors

  • Olivia Saunders, Crop and Soil Science, Washington State University
  • Joe Harrison, Professor, Nutrient Management Specialist, PAS, Washington State University

Peer Reviewers

Mitigation of Odor and Pathogens from CAFOs with UV/TIO2: Exploring Cost Effectiveness

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

This Technology is Applicable To:

Species: Swine, Poultry
Use Area: Animal Housing
Technology Category: Air Treatment (UV Photocatalysis)
Air Mitigated Pollutants: Volatile Organic Compounds, Odor, Pathogens

System Summary

Odor and target VOCs responsible for livestock odor are mitigated by UV-185 nm (‘deep’ UV) in presence of TiO2 as a catalyst into less odorous or odorless products such as CO2 and H2O. Percent removals from 80 to 99% were measured in lab-scale experiments involving simulated livestock VOCs/odorants and 1 sec irradiation with a low wattage 5.5 W lamp. Selected VOCs simulating livestock odor included p-cresol, sulfur-containing VOCs, and volatile fatty acids. Treatment cost of $0.25 per pig and continuous operation during growing cycle was estimated when the lab-scale results were extrapolated to typical ventilation rates and electricity cost at a swine finish operation in rural Iowa. The long-term goal is to develop cost-effective technology for the simultaneous treatment of odor and pathogens in livestock housing through logical progression of testing from lab-scale, through pilot-scale and finally at commercial scale. Such treatment would be applicable to both the inflow (for airborne pathogen control) and outflow air (for odor and pathogen control) at typical existing and new mechanically-ventilated barns.

Applicability and Mitigating Mechanism

  • Removal of VOCs and responsible for livestock odor in simulated barn air exhaust with UV light and advanced oxidation.
  • Research continues to move this technology from lab to commercial applications.
  • Potentially applicable to both the inflow (for airborne pathogen control) and outflow air (for odor and pathogen control) at typical existing and new mechanically-ventilated barns
  • On-demand, intermittent operation.

Limitations

  • This technology is still under development
  • Cost estimates are extrapolated from lab-scale experiments
  • Effects of particulate matter on UV treatment needs to be investigated
  • Effectiveness and costs associated long-term full-scale operation are not known at this time.

Cost

Treatment cost of $0.25 per pig and continuous operation during growing cycle was estimated when the lab-scale results were extrapolated to typical ventilation rates and electricity cost at a swine finish operation in rural Iowa. This cost could be further reduced for intermittent, on-demand operation. The capital costs would be mainly cost of ‘on-the-shelf’ deep’ UV lamps (currently at $90 for 10W lamp) and the cost of retrofitting of barn exhaust.

Authors

Jacek A. Koziel1,Xiuyan Yang1, Tim Cutler1, Shicheng Zhang1, Jeffrey Zimmerman1, Steven J. Hoff1, William Jenks1, Hans Van Leeuwen1, Yael Laor2, Uzi Ravid3, Robert Armon31Iowa State University, 2’Ya’ar Research Center, Agricultural Research Organization, Israel, 3Faculty of Civil and Environmental Engineering Technion, Haifa, Israel
Point of Contact:
Jacek Koziel, koziel@iastate.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Atomization Treatment to Improve Air Quality in a Swine Concentrated Animal Feeding Operation (CAFO)

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

The proceedings, “Mitigating Air Emissions from Animal Feeding Operations”, with expanded versions of these summaries can be purchased through the Midwest Plan Service.

This Technology is Applicable To:

Species: Swine
Use Area: Animal Housing
Technology Category: Other Treatment
Air Mitigated Pollutants: Particulate Matter (PM), Viable Bacteria, Ammonia

System Summary

Juergens Environmental Control Systems are designed to reduce particulate matter (PM), viable bacteria and ammonia and utilizes a high pressure atomization solution. Treatment consists of a formulation comprising proprietary proportions of corn oil, citric acid, ethyl alcohol, eucalyptus, vanilla and water. The formulation was developed to reduce airborne PM and ammonia through short- and long-term mechanisms. The short-term mechanisms include oil encapsulation through electrostatic attraction and coagulation. Long-term reductions occur through the suppression of dust re-suspension. Citric acid is added to neutralize gaseous ammonia. Alcohol helps dry the atomized aerosol and serves as an adjuvant so that formulation components are in complete suspension. Vanilla is added providing a deception for the olfactory senses, and eucalyptus for its respiratory medicinal property. Final formulation is atomized for 5 seconds, six times a day at a pressure of 235 psi (1620 kPa) and a rate of 45 mL/m2. The nozzles are located on the ceiling at 5 or 10 foot centers for complete coverage of the treated area and were designed to produce an aerosol 1-10 ímin diameter under conditions of this formulation and pressure.

Applicability and Mitigating Mechanism

  • Atomization treatment is effective at swine housing systems, such as in finishing, breeding and gestation production systems.
  • The oil is in a water formulation that includes alcohol, citric acid, vanilla and eucalyptus to dry and help mix the atomization solution, neutralize gaseous ammonia, and provide a pleasant odor, respectively.
  • The oil formulation is applied under high pressure, yielding micron-sized charged particles that efficiently remove PM through electrostatic attraction and coagulation.

Limitations

  • Atomization treatment is effective at swine housing systems, such as in finishing, breeding and gestation production systems.
  • The oil is in a water formulation that includes alcohol, citric acid, vanilla and eucalyptus to dry and help mix the atomization solution, neutralize gaseous ammonia, and provide a pleasant odor, respectively.
  • The oil formulation is applied under high pressure, yielding micron-sized charged particles that efficiently remove PM through electrostatic attraction and coagulation.

Cost

Field application of the atomization system and solutions are subject to change. The fixed cost of the system for 1000 – 8000-pig finishing operation averages $1.96 – $7.79 per pig per 3 year term (shipping and installation labor not included). The cost of atomization operating averages $ 0.01 per pig per day over one year. The fixed cost of the system for 500-5000-sow operation averages $9.00 – $16.00 per sow per 3 year term (shipping and installation labor not included). The cost of atomization averages $.01 per sow per day over one year.

Authors

Peter E. Juergens1, Gary L. Rapp11Juergens Environmental Control
Point of Contact:
Gary Rapp, garyrapp@westianet.net

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Characterizing Ammonia Emissions from Swine Farms in Eastern North Carolina – Part II. Potential Environmentally Superior Technologies for Waste Treatment

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

This Technology is Applicable To:

Species: Swine
Use Area: Manure Storage
Technology Category: Other Treatments
Air Mitigated Pollutants: Ammonia, Odors, Pathogens

System Summary

The need for developing environmentally superior and sustainable solutions for the management of animal waste is vital for the future of animal farms in North Carolina, the U.S. and the world. In addressing that need, the North Carolina Attorney General initiated the development, implementation, and evaluation of environmentally superior swine waste management technologies (ESTs) that would be appropriate to each category of hog farms in North Carolina. This study focuses on the emissions of nitrogen in the form of NH3 from different components/processes involved in hog waste handling and treatment, including waste storage lagoons, hog houses, and spray fields at eight selected EST sites.

A flow-through dynamic chamber system and two sets of open-path FTIR spectrometers measured NH3 fluxes continuously from water holding structures and emissions from housing units at the EST and conventional LST sites. In order to compare the emissions from the water-holding structures at the ESTs with those from the lagoons at the conventional sites under similar conditions, a statistical-observational model for lagoon NH3 flux was used. A mass balance approach was used to quantify the emissions. All emissions were normalized by nitrogen excretion rates.

Six of the eight ESTs that contained an anaerobic lagoon as part of the system did not substantially reduce ammonia emissions and therefore require additional technical modifications to be qualified as unconditional EST relative to ammonia emissions reductions. Two of the eight ESTs did not contain an anaerobic lagoon component. Both of these farms showed substantial reductions in NH3 emissions from their water-holding structures. Under the conditions reported herein these two potential ESTs meet the criteria established for ammonia emissions as described for ESTs.

 

Applicability and Mitigating Mechanism

  • Differs for each of the ESTs

Limitations

  • Differs for each of the ESTs

Cost

Is different for each of the ESTs (range is approximately $90-400 reported as 10 year annualized cost ($ per 1000 lbs. steady state live weight per year).

 

Authors

V.P. Aneja1, S.P. Arya1, I.C. Rumsey1, C.M. (Mike) Williams21Department of Marine, Earth and Atmospheric Sciences North Carolina State Univesity, 2 Department of Poultry Science, & Director, Animal and Poultry Waste Management Center, North Carolina State University
Point of Contact:
Viney P. Aneja, viney_aneja@ncsu.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.

Manure and Compost Utilization on Fruit and Vegetable Crops

Manure Handling and Field Application

Livestock manure can be a valuable source of nutrients, but it also can be a source of human pathogens if not managed correctly. Organic certification programs currently include strict requirements on the handling of raw manure. Even though these requirements are designed to minimize environmental risks, it is important that all farms using manure follow good agricultural practices to reduce any microbial risk that may exist.

Proper and thorough composting of manure, incorporating it into soil prior to planting, and avoiding top-dressing of plants are important steps toward reducing the risk of microbial contamination.

Plan Before Planting

  • Select site for produce based on land history and location
  • Use careful manure handling (see recommended practices listed below)
  • Keep good records. Consider the source, storage, and type of manure being used on the farm
  • Store manure as far away as practical from areas where fresh produce is grown and handled. If manure is not composted, age the manure to be applied to produce fields for at least six months prior to application. Where possible, erect physical barriers or wind barriers to prevent runoff and wind drift of manure onto plants.
  • Store manure slurry for at least 60 days in the summer and 90 days in the winter before applying to fields.
  • Actively compost manure. High temperatures achieved by a well-managed, aerobic compost can kill most harmful pathogens. Remember to optimize temperature, turning, and time to produce high quality, stable compost.

Cover crops and injection methods lend themselves well to both incorporate the nutrients well ahead of the time of planting fruits and vegetables but to also decrease runoff of manure applications. Photo by N. Rector, Michigan State University Extension.

Plan Manure Application Timing Carefully

  • Apply manure in the fall or at the end of the season to all planned vegetable ground or fruit acreage, preferably when soils are warm, non saturated, and cover-cropped.
  • If applying manure in the spring (or the start of a season), spread the manure two weeks before planting, preferably to grain or forage crops.
  • DO NOT harvest vegetables or fruits until 120 days after manure application.
  • Remember to document rates, dates, and locations of manure applications. Incorporate manure into the soil
  • Incorporate manure immediately after application. Although it is known that many harmful pathogens do not survive long in the soil, research is still needed on soil microbes and pathogen interactions. Some pathogens, such as Listeria monocytogenes, may survive and grow in the soil.
  • If it is necessary to apply manure or slurry to vegetable or fruit ground, incorporate it at least two weeks prior to planting and observe the suggested 120-day pre harvest interval.
  • If the 120-day waiting period is not feasible, such as for short season crops like lettuce or leafy greens, apply only properly composted manure.

Choose appropriate crops

  • Avoid growing root and leafy crops in the year that manure is applied to a field.
  • Apply manure to grain or forage crops.
  • Apply manure to perennial crops in the planting year only. The long period between application and harvest will reduce the risks.

Recommended Reading

Page Manager: Natalie Rector, Michigan State University Extension and Elizabeth A Bihn, Cornell University

Potential Routes for Pathogen Transport to Water

The movement of pathogens to water is dependent upon multiple environmental and transport factors.

Ground Water Contamination by Manure Pathogens

Thomas Harter, Groundwater Hydrologist at University of California-Davis discusses potential for ground water contamination: “While invisible to the human eye, most pathogens are giants of the micro-world … A typical bacterial pathogen is … much too large to fit between the clay or silt particles of many clay, silt, or loam soils…Only in sandy soils, the pore space is indeed large enough to provide ample traveling space for pathogens. Even there, pathogens frequently collide onto grain surfaces where they tend to become permanently attached. Ultimately, most pathogens are strained or filtered out of the water cycle long before reaching groundwater or a stream. Even if pathogens reach an aquifer, the aquifer itself will filter most remaining pathogens over relatively short distances (100 ft – 300 ft)…”

Dan Shelton, Environmental Microbial Safety Lab Research Leader, USDA Agricultural Research Service identifies some important exceptions including: “sandy or rocky soils, which generally allow for greater infiltration, …heavy soils (e.g., clay) containing significant cracks or fissures, or channels created by decayed plant roots or burrowing worms, (creating potential contamination of shallow ground water or tile drains)… and soils/subsoils throughout the Appalachian region derived from limestone geological formations (known as karst). Finally, improper installation of wells can allow for direct contamination of groundwater via the leaching of organisms along the well casing.”

Protozoa and bacterial pathogens are commonly too large to fit between the particles in most soils.
Source: Thomas Harter, University of California-Davis.

Surface Water Contamination by Manure Pathogens

Pathogen contamination of surface water is more common than contamination of groundwater. Direct contact of animals with surface water or runoff from animal housing is a significant risk. Land application sites with high runoff and erosion potential provide an additional potential pathogen connection to surface water. Thus, soil and nutrient conservation practices that minimize runoff and erosion are key BMPs for pathogen risk reduction.

Environmental Factors That Influence Pathogen Survival

Jeanette Thurston-Enriquez, USDA Agricultural Research Service scientist, summarizes environmental factors that reduce the survival of pathogens:

  • High temperatures. Each pathogen has a different susceptibility but generally high temperatures are very effective in reducing populations.
  • Time. Bacteria are living organisms, so they can’t live forever…
  • Sunlight. Has a couple of effects on pathogens. It desiccates (reduces moisture levels) them and the UV light also inactivates pathogens…
  • Desiccation. Is one of the best ways to inactivate pathogens in the environment.

Macropores, caused by earthworms, roots and cracks, allow pathogens to travel unfiltered through some soil.
Source: Cornell University http://soilandwater.bee.cornell.edu/Research/pfweb/index.htm

Recommended Resources on Pathogen Transport to Water

Pathogen transport in the environment is summarized in Dr. Jane Frankenberger’s web cast presentation found in the pathogen webcast archive. Additional information on survival time can be found starting on page 25 of USDA NRCS technical note, Waterborne Pathogens in Agricultural Watersheds.

Page Developers: Rick Koelsch, University of Nebraska, and Janice Ward, US Geological Survey
Reviewed by: Dan Shelton, USDA ARS, Sheridan Haack, USGS

Page Updated & Maintained by: John Brooks (john.brooks@ars.usda.gov)

Pathogens and Potential Risks Related to Livestock or Poultry Manure

Links to PEDv (Porcine Epidemic Diarrhea Virus).

Microorganisms

Microorganisms (e.g. virus, bacteria, protozoa, and fungi) surround us, on us, and in us; they are ubiquitous and everything in the world is governed by them.  They are part of our everyday lives.  They influence the the quality of our soil, food grown on that soil, and how our body reacts to that food. They are diverse, ranging from a simple mix of protein and DNA to complex multi-cellular  small “animals”.  Most environmental microorganisms spend their entire lives as quiet members of their ecological society, but some reach a level of infamy.  Pathogens may only represent a very small portion of all microorganisms, but they are often the most visible, thanks to readily reported outbreaks, food recalls, and proliferation of internet news blogs and sites.

What is a Pathogen?

A pathogen is a biological agent that causes disease or illness; this disease can occur in humans, animals, or crops. Zoonotic pathogens refers to pathogens naturally transmitted from animals to humans and are often heard about on news sites or involved in food recalls.

All animals including pets, livestock, wildlife and humans, are possible hosts of potential human pathogens. We will focus on pathogens originating from livestock and poultry that might be transported to humans via air, water, soil, crop, and fomites (inanimate objects) contacted directly or indirectly by manure.

Zoonotic Pathogens

There are four general classes of zoonotic pathogens:

  1. viruses
  2. bacteria
  3. protozoan parasites
  4. helminth parasites

Zoonotic viruses are those found mainly in animals that cause disease in people who come into contact with the animal or share a vector (transmitter of disease) like a mosquito (West Nile Virus is a virus of birds which mosquitoes carry and can transmit to people). Viruses can only multiply when they are inside a host cell.

  • Until very recently, it was considered that most fecal or urine transmitted viruses of livestock were not zoonotic, but things have changed somewhat in recent years, and we are now in a steep learning curve as to how important ruminants and poultry are as reservoirs of these zoonotic viral agents.

Zoonotic bacterial pathogens are, like all bacteria, single celled microorganisms that can survive and, under favorable conditions, reproduce in terrestrial and aquatic environments. The zoonotic bacteria are those that typically cycle in domestic animals without causing disease in their typical hosts. However, when they get transmitted into people, the disease that is produced can be severe.

  • Examples of zoonotic bacteria are Salmonella spp., strains of Escherichia coli such as E. coli 0157:H7, Listeria monocytogenes, and Campylobacter spp.

Zoonotic protozoan parasites, are protozoa that are found in other animals and which can infect people. There are basically two roles that humans can play in this scenario. They can be accidental hosts in the life cycle of the protozoan, where the protozoan undergoes the same development in the human as it does in its normal reservoir host. Or, the human may be an intermediate host in the life cycle of the parasites, just like any other vertebrate; in this case, the reservoir host shed many stages into the environment with the goal of infecting as many intermediate hosts as possible.

  • In the case of zoonotic protozoa relative to domestic farm animals, only a few have proven to be of significant concern relative to the infection of people.
    • Species of Cryptosporidium found in horses, cattle, pigs, and sheep can accidentally infect people, with C. parvum of young ruminants being the most common offender.
    • Giardia of livestock typically does not seem to occur in people, but it does seem that they might be infected with the human form and could then serve as a source of stages that might be passed to humans.

Zoonotic helminth parasites are worms, nematodes (roundworms), cestodes (tapeworms), or trematodes (flukes), that have cycles similar to protozoa. Again, people can be infected accidentally by the worm in the same manner as a reservoir host or they can be serving as just another vertebrate intermediate host in the life cycle of the parasite.

  • Fortunately, in the case of domestic farm animals, the helminth parasites are for the most part not zoonotic with respect to people. The only forms with stages that might be infectious to people from manure would be the egg of the pig roundworm, Ascaris suum.

Photo source: Jeanette Thurston-Enriquez webcast presentation.

Detailed discussion of protozoan parasites, bacteria, and viruses can be found on pages 5, 12, and 18, respectively, of the USDA NRCS technical note

Waterborne Pathogens in Agricultural Watersheds

Several outbreaks of human illness and death have been attributed to drinking water contaminated with livestock manure. Of 66 drinking water outbreaks in affluent nations, the probable cause of 12 of the outbreaks was livestock manure (see Hrudey and Hrudey, 2004 in Research Summaries. These included:

  • An outbreak at the 1999 Washington County Fair, New York (E. coli O157:H7; of 781 confirmed cases, 71 people were hospitalized, and 2 died);
  • An outbreak in Walkerton, Ontario, Canada in 2000 (E. coli O157:H7 and Campylobacter jejuni; 2,300 people were ill, 65 were hospitalized and 7 died).

These outbreaks were indicative of the capability of the pathogens to survive and be leached through soil to groundwater sources of drinking water.

2008 distribution of confirmed zoonotic diseases. Data source:[ http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5512a4.htm Centers for Disease Control MMWR Surveillance Summaries].

Not all illness outbreaks are livestock related. For example, animal manure was initially suggested as the source of the largest drinking water outbreak in U.S. history – the Cryptosporidium outbreak in Milwaukee, WI in 1993. Several years later following advances in microbiology and genetics, human sewage was identified as the likely contributor.

Antibiotic Resistant Bacteria in Agricultural Manures

An antibiotic-resistant bacterial population is one in which resistance is either intrinsic or has been acquired from exposure either to antibiotics or to other antibiotic resistant bacterial populations. The increased frequency of antibiotic resistant pathogens has become a serious public health concern as demonstrated with outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) and antibiotic resistant Salmonella such as Salmonella DT104. Little research and information is available on the presence of antibiotic resistant bacteria originating in manure and manure land applied environments, and, thus, little is known about their fate and transport in soil, water, crops, and agronomic systems.

A listing of possible zoonotic pathogens can be found on pages 6 – 10 of an EPA literature review.

Authored by: Michael Jenkins and John Brooks, USDA ARS, Dwight Bowman and Janice Liotta, Cornell University.

Question or concerns, contact John Brooks (john.brooks@ars.usda.gov)

Identifying the Source of Pathogen Contamination of Water

Tracking the source of pathogens has been the focus of considerable scientific effort. The Environmental Pathogens Information Network (EPI-Net) provides information including fact sheets addressing “Tracking Microbial Pathogens” and “Role of Indicators in Pathogen Detection”.

Tracking Methods

Sheridan Haack, PhD, Research Hydrologist/Microbiologist, US Geological Survey, Michigan Water Science Center summarizes tracking methods as follows:

“There are three general ways to determine the sources of microbial contamination of water. The first, and most obvious, is to search the landscape for direct contributions and potential sources and to establish that microorganisms (or the source material) could move from the source area to water. There are several methods, ranging from dye-tracing studies to sophisticated hydrologic modeling, that can establish these connections…

The second method is to examine the affected water for changes in water quality that might arise from the potential source. Nutrients (nitrogen or phosphorous), certain chemicals such as chloride, or the ratios of chemicals such as bromide and chloride, have been used to indicate sources such as septic effluents or manure. More recently, sophisticated analyses have shown that chemicals such as human-use pharmaceuticals or personal care products may be useful in tracking fecal pollution from wastewater treatment plant effluents…

In rural environments, pathogens may originate from confined or pastured livestock, home septic systems, wildlife, or rural community waste treatment systems. Source identification can be challenging. CC2.5 LPELC

Finally, a logical (if not simple or inexpensive) approach is to evaluate whether the fecal indicator bacteria (or pathogens) themselves indicate the source, which is termed “microbial or bacterial source tracking” (MST or BST). In the last 5 years, several reviews of the state of this science have been produced (see references). In general, these reviews indicate that each method can produce some useful results for distinguishing between human, livestock and wildlife sources of fecal pollution, especially for small-scale studies with limited source inputs. However, all these methods have technical difficulties, and most are not ready to be broadly used in support of management decisions. The best approach to source determination is to acquire multiple lines of evidence using several techniques.”

Page Manager. Rick Koelsch, University of Nebraska, and Janice Ward, US Geological Survey.
Reviewed by: Dan Shelton, USDA ARS, Jeanette Thurston-Enriquez, USDA ARS