Improving disease identification, treatment, & antibiotic stewardship in livestock production

This webinar will focus on assisting livestock farmers and veterinarians to better identify, diagnose, and treat sick animals with the goal of improving farm efficiency and antibiotic stewardship. This webinar is brought to you by the iAMResponsibleTM Project, a nationwide team of researchers and extension experts working to develop and deliver effective outreach on antimicrobial resistance for diverse audiences. This presentation was originally broadcast on August 18, 2023.

If you have difficulties please see our webinar troubleshooting page. If you need to download a copy of a segment, submit a request. The embedded videos can be viewed full screen by clicking on the icon in the lower right corner.

An Introduction: Improving disease ID, treatment, & antibiotic stewardship in livestock production

Mara Zelt, University of Nebraska – Lincoln (5:06)

Next Generation Grow-Finish Swine Health and Growth

Tami Brown-Brandl, University of Nebraska-Lincoln (22:59)

Presentation Slides

Enhanced Veterinary Diagnostics and Antimicrobial Stewardship

J. Dustin Loy, University of Nebraska-Lincoln (21:20)

Presentation Slides

Antimicrobial Stewardship in Dairy Production: Mastitis Examples

Daryl Nydam, Cornell University (19:50)

Presentation Slides

Questions from the Audience

All presenters (9:40)

More Information

Continuing Education Units

Certified Crop Advisers (CCA, CPAg, or CPSS)

View the archive and take the quiz (not available yet). Visit the CCA continuing education page for additional CEU opportunities.

American Registry of Professional Animal Scientists (ARPAS)

View the archive and report your attendance to ARPAS via their website. Visit the ARPAS continuing education page for additional CEU opportunities.

 

Addressing Antimicrobial Resistance Through Livestock Management

In this webinar, representatives from multiple sectors of the livestock production industry are featured to learn how each sector is approaching the complex problem of antibiotic resistance with management strategies to improve antimicrobial stewardship in live animal production and across the food production system. This presentation was originally broadcast on August 20, 2021. Continue reading “Addressing Antimicrobial Resistance Through Livestock Management”

An array of veterinary antibiotics has been found in water and soil samples

A brief summary of the manuscript, Summary of veterinary antibiotics in the aquatic and terrestrial environment (Kemper, 2008), a review of studies looking at the presence of clinical antibiotics in the native environment.

Key Points

  • All antibiotics used by people or animals contribute to the development of antimicrobial resistance (AMR).
  • Antibiotics used in livestock production have the potential to contribute to increasing pools of antibiotics in soil due to manure application or deposition.
  • The biggest contributor to antibiotics in the surface water is a likely municipal (human) waste.

Continue reading “An array of veterinary antibiotics has been found in water and soil samples”

Antibiotic Degradation During Anaerobic Digestion and Effects of Antibiotics on Biogas Production


Purpose 

The purpose of this research was to investigate the degradation of four animal husbandry antibiotics during anaerobic digestion (AD) and study biogas inhibition from the antibiotics. This study was designed to fill information gaps related to AD inhibition by different antibiotic classes in diluted manures received by anaerobic digesters, particularly cattle manure, and the need to more thoroughly investigate antibiotic degradation products from the AD process.

What did we do? 

We conducted AD bench-scale experiments that investigated biogas inhibition and antibiotic degradation. First, cattle manure was added to glass bottles. A known amount of antibiotic standard was added to the manure. A small amount of dilution water was added and the manure-antibiotic slurry was mixed briefly. Then, anaerobic digestion inoculum was added to the bottle. The air in the bottle was purged with nitrogen gas. Finally, the bottles were sealed and placed in an incubator set at 37°C. Biogas measurements and small liquid samples for antibiotic analysis were taken daily. At the end of the 40 day AD study, the solids were extracted to determine the amount of antibiotic adsorbed to the solids.

What have we learned? 

Results from our research showed that three out of four antibiotics degraded within 5 days of AD. Several degradation products were detected, some of which could be biologically active. The antibiotic that did not degrade was mostly found in the liquid phase of the AD reactor slurry and a small portion was adsorbed to the solids. Our results suggest that when antibiotic contaminated feedstocks are added to AD reactors, persistent antibiotics and transformation products may contaminate the liquid and solid effluents.

Our results showed the one of the antibiotics tested was more toxic to the AD process. Approximately 6.4-36 mg/L florfenicol lowered biogas production by 5-40%. Greater than 91 mg/L of the other antibiotics was needed to lower biogas production. These higher concentrations can be found in urine and feces of treated animals but they are not typical for the AD reactor following the addition of multiple feedstocks, inoculum, and dilution water. Our results suggest that there is little concern for these antibiotics to lower biogas production when cattle manure is used as an AD feedstock because the antibiotic concentration should be below inhibitory concentrations.

Future Plans 

Future research plans are to investigate the microbial population change in anaerobic digesters due to antibiotic contaminated cattle manure.

Authors

Shannon Mitchell, Post-doctoral Research Associate at Washington State University shannon.mitchell@email.wsu.edu

Craig Frear, Assistant Professor at Washington State University

Additional information 

http://www.ncbi.nlm.nih.gov/pubmed/24113548

Acknowledgements

This research was supported by Biomass Research Funds from the WSU Agricultural Research Center; and by the BioAg (Biologically Intensive Agriculture and Organic Farming) Grant Program of the Washington State University Center for Sustaining Agriculture and Natural Resources.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.