Thermal-Chemical Conversion of Animal Manures – Another Tool for the Toolbox


How Can Thermo-Chemical Technologies Assist in Nutrient Management?

Livestock operations continue to expand and concentrate in certain parts of the country. This has created regional “hot spot” areas in which excess nutrients, particularly phosphorus, are produced. This nutrient issue has resulted in water quality concerns across the country and even lead to the necessity of a “watershed diet” for the Chesapeake Bay Watershed. To help address this nutrient concern some livestock producers are looking to manure gasification and other thermo-chemical processes. There are several thermo-chemical conversion configurations, and the one chosen for a particular livestock operation is dependent on the desired application and final by-products. Through these thermo-chemical processes manure Factory processingvolumes are significantly reduced. With the nutrients being concentrated, they are more easily handled and can be transported from areas of high nutrient loads to regions of low nutrient loads at a lower cost. This practice can also help to reduce the on-farm energy costs by providing supplemental energy and/or heat. Additional benefits include pathogen destruction and odor reduction. This presentation will provide an overview of several Conservation Innovation Grants (CIG) and other manure thermo-chemical conversion projects that are being demonstrated and/or in commercial operation. Information will cover nutrient fate, emission studies, by-product applications along with some of the positives and negatives related to thermo-chemical conversion systems.

Exterior of factory processingWhat did we do? 

Several farm-scale manure-to-energy demonstration projects are underway within the Chesapeake Bay Watershed. Many of these receive funding through the USDA-NRCS Conservation Innovation Grant program. These projects, located on poultry farms, are being evaluated for the performance of on-farm thermal conversion technologies. Monitoring data is being collected for each project which includes: technical performance, operation and maintenance, air emissions, and by-product uses and potential markets. Performance of manure gasification systems for non-poultry operations have also been reviewed and evaluated. A clearinghouse website for thermal manure-to-energy processes has been developed.

What have we learned? 

The projects have shown that poultry litter can be used as a fuel source, but operation and maintenance issues can impact the performance and longevity of a thermal conversion system. These systems are still in the early stages of commercialization and modifications are likely as lessons are learned. Preliminary air emission data shows that most of the nitrogen in the poultry litter is converted to a non-reactive form. The other primary nutrients, phosphorus and potassium, are preserved in the ash or biochar co-products. Plant availability of nutrients in the ash or biochar varies between the different thermal conversion processes and ranges from 80 to 100 percent. The significant volume reduction and nutrient concentration show that thermal conversion processes can be effective in reducing water quality issues by lowering transportation and land application costs of excess manure phosphorus.

Future Plans    

Monitoring will continue for the existing demonstration projects. Based on the lessons learned, additional demonstration sites will be pursued. As more manure-to-energy systems come on-line the clearinghouse will be updated. Based on data collected, NRCS conservation practice standards will be generated or updated as necessary.

Author       

Jeffrey P. Porter, PE, Manure Management Team Leader, USDA-Natural Resources Conservation Service jeffrey.porter@gnb.usda.gov

Additional information                

Thermal manure-to-energy clearinghouse website: http://lpelc.org/thermal-manure-to-energy-systems-for-farms/

Environmental Finance Center review of financing options for on-farm manure-to-energy including cost share funding contact information in the Chesapeake Bay region: http://efc.umd.edu/assets/m2e_ft_9-11-12_edited.pdf

Sustainable Chesapeake: http://www.susches.org

Farm Pilot Project Coordination: http://www.fppcinc.org

National Fish and Wildlife Foundation, Chesapeake Bay Stewardship Fund: http://www.nfwf.org/chesapeake/Pages/home.aspx

Acknowledgements

National Fish and Wildlife Foundation, Chesapeake Bay Funders Network, Farm Pilot Project Coordination, Inc., Sustainable Chesapeake, Flintrock Farm, Mark Weaver Farm, Mark Rohrer Farm, Riverview Farm, Wayne Combustion, Enginuity Energy, Coaltec Energy, Agricultural Waste Solutions, University of Maryland Center for Environmental Science, Environmental Finance Center, Virginia Cooperative Extension, Lancaster County Conservation District, Virginia Tech Eastern Shore Agricultural Research and Extension Center, Eastern Shore Resource Conservation and Development Council, with funding from the USDA Conservation Innovation Grant Program and the U.S. EPA Innovative Nutrient and Sediment Reduction Program.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Effect of Wood Biochar Amendment to Sand on Leachate Water Quality with Repeated Dairy Manure Application: A Soil Column Study

Purpose            

Agricultural operations can pose a threat to the quality of nearby water sources, particularly from nitrogen and phosphorus losses following land application of manure. Biochar application to soils has the potential to ameliorate degraded soils and reduce nutrient leaching to groundwater. The effects of amending sand soil columns with hybrid poplar biochar made by a slow pyrolysis process at 450°C at varying rates (0, 1, 2 and 5% by weight) with repeated dairy manure applications over a 56-week period was examined to evaluate the impact to leachate water quality.

What did we do? 

Four biochar treatments and a control were mixed and packed into soil columns by weight to a depth of 20 cm. Leachate from columns were measured in quadruplicate to assess differences in water quality over a 56-week study duration. Each treatment column received an initial manure application followed by additional applications at 14 week intervals, totaling four manure applications. All columns received a 300 mL DI water application once every two weeks.

The total volume of leachate, leachate pH and BOD5 and concentrations of nitrite (NO2-N), nitrite+nitrate (NO2-N+NO3-N), total nitrogen (TN), and total phosphorus (TP) were measured for each column after each leaching event. After the first 14 week cycle (starting with the second manure application), leachate samples were also analyzed for ammonia+ammonium (NH3-N+NH4-N). After each application, manure samples were analyzed for these same parameters. At the end of the study, retention of the same nutrients was determined for mass balance analysis.

Leachate photo

Leachate photo

What have we learned?

Increasing levels of biochar amendment to sandy soil with repeated dairy manure application decreased leachate pH throughout the study and decreased peak levels of BOD5 after manure application. Increased levels of biochar also decreased cumulative TN, NH3-N+NH4-N and NO3-N in leachate, but slightly increased TP leaching. Nutrient retention in the columns at the end of the study indicated that N reduction in leachate was not due to increased retention in the columns. These results indicate that biochar could be a viable option to reduce N leaching from agricultural fields or treatment systems. However, more research is needed on the effect of biochar on gaseous N emissions and other biochar/soil interactions before amending soil with biochar can be recommended as a nutrient management strategy.

Future Plans 

Future work should focus on uncovering the mechanisms for N cycle changes in soils with biochar amendment, such as tracking N-labelled fertilizers in column leaching and emissions. Due to its high cost, biochar may be a more feasible option for treatment systems, such as filter strips or tile drains, which should be explored as a means to reduce nutrient leaching from agricultural fields in an economical manner. Field trials should also be conducted to determine appropriate biochar amendment methods, effects on plant growth and any differences in leaching and emissions under field conditions.

Authors

Alysa Bradley, PhD Student, Biological Systems Engineering Department, University of Wisconsin-Madison alysa.bradley@wisc.edu

Rebecca Larson and Troy Runge, Assistant Professors, Biological Systems Engineering Department, University of Wisconsin-Madison

Additional information                

Alysa Bradley, Biological Systems Engineering Department, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706, alysa.bradley@wisc.edu

Acknowledgements      

This material is based upon work supported by the National Institute of Food and Agriculture, United States Department of Agriculture, under ID number WIS01760.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Co-Pyrolyzing Plastic Mulch Waste with Animal Manures

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

*Abstract

The objective of this work was to investigate the feasibility of co-pyrolyzing agricultural plastic mulch wastes with animal manures. Dried swine manure and spent fumigation plastic mulch were used as a hybrid feedstock for a batch pyrolysis reactor system. The reactor sample was heated to 500 °C at an approximate heating rate of 7 °C/min and stayed at 500 oC for 2 hrs before cooled down to room temperature.  Gaseous, liquid, and solid end products were analyzed for their chemical and thermal properties. Preliminary results indicated that pyrolysis of spent fumigant plastic alone produced fumigant-free combustible gases, liquid oil, and paraffin-like waxes.  Results from thermogravimeteric analyses and chemical characteristics of end products will be presented at the meeting.

Why Study Co-Pyrolysis with Manure?

Pyrolyzing livestock and agricultural wastes produces combustible gas and value-added biochar.  However, the combustible gas produced from manure pyroysis alone does not provide enough energy to sustain the process. Spent agricultural plastics are usually disposed in landfills, which is not only expensive, but also not environmentally sustainable as the space for landfill is increasingly limited in the U.S. Pyrolysis of spent agricultural plastic produces high energy combustible gas, oil and wax. Thus, co-pyrolyzing animal manures with plastic may achieve an energetically sustainable pyrolysis process. The purpose of this work is to investigate the feasibility of co-pyrolyzing agricultural plastic mulch wastes with animal manures. Specific objectives are to 1) identify optimal pyrolysis processing conditions, 2) characterize byproducts, 3) evaluate potential pesticide emission, 4) perform energetics, and 5) determine biochar quality.

What Did We Do?

A mixture (2:1) of dried swine manure and spent fumigation plastic mulch used for vegetable production was used as a hybrid feedstock.  In addition, four different new plastic films (Hytibarrier, Thermic, Bayer CS, and 1 mil HDPE) frequently used as plastic mulch were pyrolyzed with the swine manure. Optimal pyrolysis temperatures for these hybrid feedstocks were determined via thermogravimetric analyses (TGA).  Subsequently, a bach pyrolysis reactor system was used to pyrolyze the hybrid feedstock samples (21 to 54 g).   The samples were heated without oxygen to 500 °C at an approximate heating rate of 7 °C/min and stayed at 500 oC for 2 hrs before cooled down to room temperature.  Gaseous, liquid, and solid pyrolysis product were analyzed for thermal and chemical properties.

What Have We Learned?

1. Nonisothermal plastic pyrolysis thermograms obtained at 10 oC/min heating rate is shown in Figure 1.  The plastic samples decomposed  rapidly at 450 oC, liberating volatile products.   In contrast, swine solids decomposed rather slowly over wider range of temperatures (161 to 891 oC) with the maximum decomposition occured at 294 oC.  The TGA results showed that pyrolysis temperature higher than 450 oC is necessary to completely decompose plastic samples and maximize combustible gas production, which can reduce energy requirement for pyrolyzing swine manure.

Figure 1 – Nonisothermal thermograms of plastic mulch films

2. Selected fumigants (methyl bromide, methyl iodide, 1,3-dichloropropene, and chloropicrin) widely used for vegetable production were not detected in the used plastic mulch pyrolysis gas samples.

3. Production of energy-rich gases such as methane, ethane, and propane was substantially increased from co-pyrolyzing swine manure with plastic mulch as shown in Figure 2.

Figure 2 – Major gas compositions of product gases from pyrolyzing swine manure, used plastic, and the mixture of swine manure and plastic mulch.

Future Plans

Mass and energy balances of the pyrolysis reactions along with pytotoxicity of biochar produced from co-pyrolyzing swine manure and plastic mulch will be evaluated in the near future.

Authors

Kyoung S. Ro, Environmental Engineer: USDA-ARS Coastal Plains Soil, Water & Plant Research Center, Florence, SC. kyoung.ro@ars.usda.gov

Patrick, G. Hunt, Soil Scientist/ Research Leader; Keri B. Cantrell, Agricultural Engineer; Ariel A. Szogi, Soil Scientist: USDA-ARS, Florence, SC

Scott R. Yates, Research Leader/Technical Editor JEQ: USDA-ARS, Riverside, CA

Michael Jackson, Chemist; David Compton, Chemist: USDA-ARS, Peoria, IL

Additional Information

K.B. Cantrell, P.G. Hunt, M. Uchimiya, J.M. Novak, K.S. Ro. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Biores. Technol. 107:419-428.

X. Cao, K.S. Ro, M. Chappell, Y. Li, J. Mao. 2011. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Energy Fuels 25:388-397.

K.A. Spokas, J.M. Novak, C.E. Stewart, K.B. Cantrell, M. Uchimiya, M.G. DuSaire, K.S. Ro. 2011. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 85:869-882.

K.S. Ro, K.B. Cantrell, P.G. Hunt. 2010. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar.  Ind. Eng. Chem. Res. 49:10125-10131.

K.S. Ro, K.B. Cantrell, P.G. Hunt, T.F. Ducey, M.B. Vanotti, A.A. Szogi. 2009. Thermochemical conversion of livestock wastes: carbonization of swine solids. Biores. Technol. 100:5466-5471.

USDA-ARS Coastal Plains Soil, Water & Plant Research Center Publication Website (https://www.ars.usda.gov/southeast-area/florence-sc/coastal-plain-soil-water-and-plant-conservation-research/)

Acknowledgements

This research was a part of USDA-ARS NP 214 Agriculture and Industrial Byproduct Utilization project. The authors are greatful to Mr. Melvin Johnson and Jerry Martin II for their technical assistance.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Reducing the Impacts of Poultry Litter on Water Quality by Developing Alternative Markets for Poultry Litter Biochar

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Manure from confined animal operations is an environmental liability because of the potential for water and air pollution. The poultry industry in the Chesapeake Bay watershed is under increased regulatory scrutiny due to nitrogen and phosphorous inputs into the Bay. Although poultry litter (PL) is valued as a fertilizer, the cost of shipping the bulky material out of the watershed is prohibitive. One potential solution is to turn the excess litter into energy through pyrolysis. If a market can be developed for poultry litter biochar, more N and P could be removed from the Chesapeake Bay watershed.

Our overall program goals are to develop a comprehensive strategy to convert poultry litter from an environmental liability into an economic and ecological asset and to develop a comprehensive conceptual model for improving poultry litter waste management through market-driven alternatives. Our specific objectives are to characterize the properties and variability of biochar from a commercial poultry/ litter biochar producer, evaluate PL biochar for two potential commercial uses; greenhouse plant production and as an amendment for degraded mine soils.

Why Is It Important to Develop Alternative Markets for Biochar?

Figure 1. Our biochar supplier, Frye’s Poultry Farm in Wardensville, WV.

Excess phosphorus (P) in the Chesapeake Bay watershed has created water quality problems within the Bay. A major source of this P originates from confined animal feeding operations (CAFOs); within the West Virginia portion of the watershed, primarily in the form of poultry production. The lack of sufficient, suitable cropland on which to spread the manure from these operations has created the need to export P out of the watershed. One potential solution to this challenge may come from the gasification of poultry litter. Gasification produces energy and a carbonaceous byproduct (Figure 1) for which a number of applications have been suggested, including use as a soil amendment. Our long-term objectives are to determine the beneficial uses for a commercially produced poultry litter biochar (PLB) with the goal of generating a market for PLBs that will promote the transport of P out of the Bay watershed. In this work, we describe the particle size distribution and nutrient content of two different pyrolysis oven batch runs of poultry litter from our commercial producer (M-type and W-type).We describe effects of these PLB types on lettuce seed germination and seedling growth and its use as a substitute greenhouse media for cyclamen production.  We also describe the results of an experiment using PLB for mine soil reclamation and cellulosic biomass production.

What did we do?

M-Type and W-type PLBs were mechanically sieved into six size classes in duplicate and then extracted with dilute hydrochloric (0.05M) and sulfuric (0.05M) acids. Solution sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and P concentrations were determined and converted to mg (kg PLB)-1. Lettuce (Lactuca sativa var. Black Simpson) seed was planted into a commercial top soil amended with two rates of M-type biochar (3.18 g kg-1) and (9.09 g kg-1), some of which had been rinsed with water for 24 or 48 hours to remove salts, with no biochar and fertilizer controls, in two 8 x 8 Latin Square designs. In one Latin Square seedlings were thinned to two per cell and allowed to grow until root bound. Germination percent and dry mass were determined. The second PLB product (W-type) was used untreated as a substitute potting media for greenhouse cyclamen (Cyclamen persicum) production The treatments were a commercial mix, 1:1 peat:perlite + 64 g dolomitic lime or + 112 g W-type PLB. One of the products (M-type) was washed in tap water in an attempt to reduce salt content and then leached and unleached PLB (2.5 kg m-2) was used (lime and fertilizer controls) in a factorial experiment using switchgrass (Panicum virgatum) and Miscanthus sinensis transplants for mine soil reclamation.

What we have learned?

The M-type PLB had more, fine particles (<60 mesh) than did W-Type). The M-type fine particles (<60 mesh) had more Ca and K whereas the coarser W-type particles (>60 mesh) had more K. PLB did not have a significant effect on lettuce germination (> 85%) at either concentration or rinsing treatment. PLB treatments also had no effect on aerial biomass of lettuce yield. The inorganic fertilizer treatment was the only treatment with aerial biomass significantly different (higher) than the control. Cyclamen growth was initially slower, but by the end of the experiment, yields were equivalent. It is too soon to draw conclusions from the mine soil reclamation experiment.

Future plans

We will continue monitoring switchgrass and Miscanthus growth and mine soil property changes in response to biochar applications and are seeking additional disturbed soil sites for new experiments. Because biochar is known to sorb metal contaminants, we have initiated laboratory experiments to evaluate the effectiveness of biochar for the remediation of brownfield sites. We also have plans to determine the stability of biochar in a variety of soils and the effects of biochar applications on soil microbial communities and greenhouse gas emissions.

Authors

Louis M. McDonald, Professor, LMMcDonald@mail.wvu.edu

Andrew Burgess, Research Assistant Professor

Jeff Skousen, Professor

Joshua L. Cook, Graduate Student

Sven Verlinden

Walter E. Veselka, IV, Research Associate

James T. Anderson, Professor. Environmental Research Center, West Virginia University

Additional information

Anderson, J. T., C. N. Eddy, R. L. Hager, L M. McDonald, J. L. Pitchford, J. Skousen, and W. E. Veselka IV. 2012. Reducing impacts of poultry litter on water quality by developing markets for energy and mine land reclamation. Athens: ATINER’S Conference Paper Series, No: ENV2012-0069. 12pp. http://www.atiner.gr/papers/ENV2012-0069.pdf

Acknowledgements

Support for this project was provided by NOAA, NSF, blue moon fund, Frye Poultry Farms, and the Davis College of Agriculture, Natural Resources and Design and Environmental Research Center at West Virginia University.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

The Farm Manure to Energy Initiative: Using Excess Manure to Generate Farm Income in the Chesapeake’s Phosphorus Hotspots

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Currently, all the Bay states are working to achieve nutrient reduction goals from various pollution sources.  Significant reductions in phosphorus pollution from agriculture, particularly with respect to phosphorus losses from land application of manure are needed to support a healthy aquatic ecosystem.  Producers in high-density animal agricultural production areas such as Lancaster County region of Pennsylvania, the Delmarva Peninsula, and the Shenandoah Valley region of Virginia, need viable alternatives to local land application in order to meet nutrient reduction goals.

Field demonstrations will be monitored to determine whether the technologies are environmental beneficial, and economically and technically feasible. Specific measures of performance include: reliability and heat distribution, in-house air quality, avoided propane or electricity use, costs to install and maintain, fertilizer and economic value of ash or biochar produced, air emissions, and fate of poultry litter nutrients. Technology evaluation results will be shared on a clearinghouse website developed in partnership with eXtension.

The Farm Manure to Energy Initiative is also supporting efforts to develop markets for nutrient rich ash and biochar co-products. Field trials using nutrient rich ash and biochar from poultry litter thermochemical processes for fresh market vegetable production are currently underway at Virginia Tech’s Eastern Shore Agricultural Research and Experiment Station.

Purpose

The Farm Manure to Energy Initiative is a collaborative effort to evaluate the technical, environmental, and economic feasibility of farm-scale manure to energy technologies in an effort to expand management and revenue-generating opportunities for excess manure nutrients in concentrated animal production regions of the Chesapeake Bay watershed.

What Did We Do?

The project team went through a comprehensive review process and identified three farm-scale, manure to energy technologies that we think have the potential to generate new revenue streams and provide alternatives to local land application of excess manure nutrients.  Installation and performance evaluation of two of these technologies on four host farms in the Chesapeake Bay region are underway. Partners have also completed a survey of financing options for farm-scale technology deployment and published a comprehensive financing resources guide for farmers in the Chesapeake Bay region.

What Have We Learned?

To date, we have not identified any manure to energy technologies that also provide alternatives to local land application of excess manure nutrients for liquid manures.  Thermochemical manure to energy technologies using poultry litter as a fuel source seem to show the most promise for offering opportunities to export excess nutrients from phosphorus hotspots in the Chesapeake Bay region. Producing heat for poultry houses is the most readily available energy capture option.  We did not identify any vendors with a proven approach to producing electricity via farm-scale, thermochemical manure to energy technologies. With respect to the fate of poultry litter nutrients, preliminary air emissions data indicates that most poultry litter nitrogen (greater than 98%) is converted to non-reactive nitrogen in the thermochemical process. Phosphorus and potash are preserved in the ash or biochar coproducts. Preliminary field trial results indicate that phosphorus in ash and biochar is bioavailable and can be used as a replacement for commercial phosphorus fertilizer, but bioavailability varied according to the thermochemical process.

Future Plans

We are currenty in the process of installing and measuring the performance of farm-scale demonstrations in the Chesapeake Bay region.  We are collaborating with the Livestock and Poultry Environmental Learning Center to develop a clearinghouse website for thermochemical farm-scale manure to energy technologies that will be hosted on the eXtension website.  Performance data from our projects will be shared on this website, which can also be used as a platform to share information about the performance of other farm-scale, thermochemical technology installations around the U.S. Technical training events using farm demonstrations as an educational platform will be hosted during the later half of the project. Additional field and row crop trials to demonstrate the fertilizer value of the concentrated nutrient coproducts are also planned using ash from farm demonstrations.

Authors

Jane Corson-Lassiter, USDA NRCS, Jane.Lassiter@va.usda.gov; Kristen Hughes Evans, Executive Director, Sustainable Chesapeake

Additional partners in the Farm Manure to Energy Initiative include: Farm Pilot Project Coordination, Inc., University of Maryland Center for Environmental Studies, University of Maryland Environmental Finance Center, Virginia Cooperative Extension, Lancaster County Conservation District, the Virginia Tech Eastern Shore Agricultural Research and Extension Center, National Fish and Wildlife Foundation, Chesapeake Bay Funders Network, Chesapeake Bay Commission, and International Biochar Institute.

Additional Information

www.sustainablechesapeake.org

www.fppcinc.org

Acknowledgements

Funding for this project is provided by a grant from the USDA Conservation Innovation Grant program, the National Fish and Wildlife Foundation via the U.S. EPA Innovative Nutrient and Sediment Reduction Program, the Chesapeake Bay Funders Network, as well as technology vendors and host farmers participating in the technology demonstrations.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Agronomic and Environmental Uses of Biochar (Part 2)

Technologies to treat animal manure are rapidly gaining more traction as producers search for ways to minimize environmental impact and maintain a profitable operation. In the conclusion of this 2-part webcast, the focus continues on a thermal technology, pyrolysis, and the resulting biochar. Biochar impacts on soil carbon and fertility is discussed as well as how biochar as a soil amendment affects microbial life within the soil. This presentation was originally broadcast on August 21, 2015. More… Continue reading “Agronomic and Environmental Uses of Biochar (Part 2)”

Agronomic and Environmental Uses of Biochar – Part 1

Technologies to treat animal manure are rapidly gaining more traction as producers search for ways to minimize environmental impact and maintain a profitable operation. In the conclusion of this 2-part webcast, the focus continues on a thermal technology, pyrolysis, and the resulting biochar. In part 1 of this 2-part webcast, we will provide a general overview of the history of biochar use, how biochar is produced, and give examples of how biochar is being used for agronomic and environmental purposes. This presentation was originally broadcast on July 17, 2015. More… Continue reading “Agronomic and Environmental Uses of Biochar – Part 1”