Protocol for Determining the Cost/Benefit of a Manure Storage Lagoon Cover

Do Manure Storage Covers Pay?

A protocol was developed to determine the cost/benefit of installing a cover over a manure storage structure. Included are a discussion on the cost and selection of the cover, a procedure to determine the feasibility of biogas production and capture, the technique to estimate the dilution of the slurry resulting from precipitation, and tools to estimate ammonia emissions, thereby predict the increase in nitrogen content and the savings from reduced fertilizer hauling. By considering the combination of all of these factors, the payback period can be calculated.

Current Activity

The protocol has been developed and a case study was performed. A manuscript is in preparation.

What We Have Learned

Techniques to identify the items that determine the cost and benefit have been researched and refined for the protocol. Based on a sensitivity analysis a crucial benefit is the savings associated with keeping precipitation out of the manure thus avoiding extra hauling costs. As a result, relatively short payback periods can be realized.

Why is This Important

One of the most common practices to store manure is the use of open storage structures. Numerous problems for farmers are created by the open structure including ammonia loss, methane emissions, odor complaints, and increased hauling of manure slurry. Covering a lagoon offers substantial environmental benefits and can save farmers money.

a lagoon cover recently installed on a dairy farm

For More Information

Steve Safferman
Michigan State University
Biosystems Engineering
202 Farrall Hall
East Lansing, MI 48824

This report was prepared for the annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Odor Mitigation Using Vegetative Environmental Buffers Research Summary

Why Study Trees for Controlling Odors from Livestock and Poultry Buildings?

The objective of this research is to evaluate the bio-physical, economic and social efficacy of the use of Vegetative Environmental Buffers (VEBs) – purposefully planted linear arrangements of trees and shrubs – to incrementally mitigate livestock and poultry odor. Our research has demonstrated that tree barriers can help impede, alter, absorb, and/or dissipate livestock odor plumes and other emissions prior to contact with people. As air moves across vegetative surfaces, leaves and other aerial plant surfaces remove some of the dust, gas, and microbial constituents of airstreams. Trees and other woody vegetation also enhance localized air dispersion by increasing mechanical turbulence. Our research program into the efficacy of VEBs involves a multi-disciplinary, multi-species and multi-analytic perspective. Related: Archived webcast on “Trees, Shelterbelts, and Windbreaks for Mitigating Livestock and Poultry Odors

Activities

The efficacy of VEBs in mitigating livestock and poultry odor is being examined from a three- pronged perspective measuring efficacy in:

  1. field measured bio-physical terms (e.g. physical reductions in downwind movement of particulates, odor and ammonia and long-term tree health)
  2. financial feasibility terms at the farm-level (e.g. total costs of VEB establishment and maintenance vs. producer willingness to pay), and
  3. in terms of social approval of the use of VEBs (e.g. evaluation of the impact of VEBs on production site aesthetics and consumer willingness to pay for environmentally friendly meat products).

The quantification of physical odor mitigation via the use of VEBs is approached with field trials using full size VEB systems (multiple rows of trees) at working poultry and swine facilities as well as using scale models of these facilities for wind tunnel examinations and advanced computer simulation.

Custom rate financial data has been collected and applied to a range of livestock facilities (e.g. differing VEB designs, production scale, etc.) to calculate typical upfront and long-term costs. Producer willingness to pay has been determined via multi-state producer surveys. Social opinion data was collected via multi-state consumer focus groups (utilizing photo elicitation techniques) and a series of integrated social surveys.

Can Trees Reduce Odor Movement?

Baseline physical data suggests that VEBs can contribute up to a 10% reduction in the movement of odor downwind. The technology broadly applied at the farm level seems to be financially feasible to most swine producers – with total costs ranging from $0.01 to $0.33 per pig produced; these costs by and large being well below maximum producer willingness to pay for the use of VEBs. And social surveys in IA and NC show strong social support and appreciation of the use of trees for air quality purposes with strong social agreement that VEBs improve the aesthetics of confinement production.

Why is This Important?

Affordable, tertiary odor mitigation technology with the added benefit of being socially acceptable is a strong compliment to any comprehensive manure management program at production sites .

For More Information

Author: John Tyndall, Iowa State University

Visit the Iowa State University vegetative environmental buffers website.

Read the following article: Tyndall, J.C. and J.P. Colletti. 2007. Mitigating Swine Odor with Strategically Designed Shelterbelt Systems: A Review. Agroforestry Systems. Volume 69, Number 1/January, 2007.

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Research Summary: Improving Pasture and Hay-ground with Low-disturbance, Manure Slurry-enriched Seeding

Research Purpose

Many dairy producers in the Great Lakes Region have abandoned year-around confinement feeding and have adopted a form of managed grazing where cattle are on pasture during the growing season and housed during the winter months. Pasture land is often nutrient deficient because crop nutrients are removed in harvested hay early in the growing season when forage supply exceeds grazing demand. Thinning stands are often a problem on a grazing farm, particularly after a dry summer when over-grazing occurs.

The objective of this work was to develop and evaluate a process whereby forage Brassica, grass and legume seed was carried in nutrient rich manure slurry to seeding micro-sites in small grain stubble or established pasture and hay ground. This shallow mixing of the seed-laden slurry increased the species richness, yield and quality of hay and grassland, extended the grazing season, and provided a more complete, balanced feed for grazing stock.

Activities

Slurry seeding was done with a commercially available slurry tanker (3000 gal) equipped with a rear-mounted rolling-tine aerator (Aer-Way) and a SSD (sub-surface deposition) slurry distribution system. The rolling-tine aerator was ground-driven with 8-inch tines on a rotating shaft with 7½ inch spacing between each set of tines. The angle of the rotating shaft was adjustable in 2.5º increments from 0º to 10º degrees relative to the direction of travel. The 0º gang angle provided little soil disturbance while the 10º gang angle provided the most soil loosening.

Seed was mixed directly in the spreader tank and applied with the manure slurry.

Slurry-seeding involved mixing seed in the slurry tank and passing the seed-laden slurry through a rotating chopper/distributor and then through drop tubes to the fractured and loosened soil behind each set of rolling tines. Excess PTO pump capacity provides bypass flow for seed mixing and distribution. Slurry rate calibration is based on tractor engine RPM, travel speed, machine width, and slurry flow rate. A 150 PTO-hp tractor or larger was needed to draw the slurry tank and aeration tool.

Forage rape (Barkant, 6 lb/ac), forage turnip (Pasja, 6 lb/ac), brown mid-rib sorghum-sudan (Sudex, 30 lb/ac) and common oats (64 lb/ac) were sown in untilled wheat stubble on a Capac sandy loam soil on 8 August. Two seeding methods were used: 1) conservation tillage with two passes of a combination tillage tool (12 ft Kongskilde Triple-K, 3-inch tillage depth), and 2) slurry seeding with aeration tillage and seed-laden swine slurry (10 gang angle, 6,000 gal/ac). Fifty lb/ac N as urea was applied to the tilled-and-drilled plots before tillage and planting. No commercial N was applied to the slurry-seeded plots. The sudex and oats were harvested on 21 October and the rape and turnip on 27 October.

Orchard grass (12 lb/ac) and Medium Red Clover (10 lb/ac) were sown in an established brome grass sod using frost, no-till and slurry seeding methods. Frost seedings were done in March. On August 24, the brome grass in one-half of each plot was suppressed with Paraquat dichloride to reduce competition from the existing stand for sunlight and moisture. On August 31, seedings were no-till drilled (Great Plains drill) or slurry seeded (2.5 º gang angle) with 6,000 gal/ac swine manure. No commercial fertilizer was applied to the non-manured plots. Forage yield and quality were evaluated.

What We Have Learned

Slurry seeding late season forages after wheat

The weather was hot and dry in August. The tilled-and-drilled oat stand (43 plants/ft-sq) was significantly greater than the manure slurry-seeded oat stand (24 plants/ft-sq), but there was no difference between the till-and-drilled and slurry-seeded forage rape, forage turnip or sudex stands. Sudex did not establish well with either seeding method. Forage rape and forage turnip yielded greater than sorghum-sudan and oats, but there were no significant differences within a crop due to the seeding method.

Figure 1. Yield of late season grazing crops seeded with swine slurry in untilled wheat ground. Contributed to eXtension cc2.5

Slurry seeding forages in hay ground

Forage yield and quality parameters are under evaluation. Based on preliminary observations:

  • No-till and slurry seeding of red clover in a brome grass sod was more effective than frost seeding in increasing biomass yield and botanical diversity.
  • No-till and slurry seeding of orchard grass in brome grass sod increased botanical diversity but had little effect on biomass yield after the initial N boost. Frost seeding orchard grass had little effect on botanical diversity.
  • The use of a pre-plant burn-down tended to increase weed biomass.
  • The use of a pre-plant burn-down enhanced the inter-seeding of orchard grass, but it did not enhance the stand of red clover.

Forage dry matter yield, Cut 1 2007.

Why is This Important?

Manure slurry-enriched micro-site seeding is an innovative process that combines low disturbance aeration tillage, manure slurry application and the seeding of cover crops in one efficient operation. Manure nutrients collected throughout the winter can be used to meet the nutrient needs of hay and pasture crops but concerns regarding the effect of manure on pasture productivity limit its use. When applied to pasture and hay crop restoration this new process will increase botanical diversity, yield and quality, and provide a more complete, balanced feed for grazing stock. A more complete integration of pasture and manure nutrient management in grass-based systems offers an opportunity to expand the land base for manure application, minimize manure transport costs, improve on-farm nutrient recycling, and improve forage quality and farm profitability.

For More Information

Contact Tim Harrigan, harriga1@msu.edu or 517.353.0767. For more information refer to the following article: Harrigan, T.M., D.R. Mutch and S.S. Snapp. 2006. Slurry-Enriched Seeding of Biosuppressive Covers. Applied Engineering in Agriculture 22(6):827-834.

By Tim Harrigan and Rich Leep, Michigan State University

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Orienting Buildings Perpendicular to Prevailing Winds May Reduce Odors

Scientists from USDA’s Agricultural Research Service (ARS) are taking a sideways look at odors, literally.

As anyone that has evaluated potential sites for swine facilities knows, many factors–such as wind speed, direction, topography, vegetation, and more–influence the potential impacts on downwind neighbors. In an effort to understand how air currents interact with the building site–and therefore pick up odors, dust, and other emissions–Tom Sauer and Jerry Hatfield, with the National Soil Tilth Laboratory in Ames, Iowa, built a model swine farm in a wind tunnel.

Research Activities

Air flow velocities and turbulence intensities were measured with a sensor that measured how quickly the winds carried heat away at 83 points behind the building models. They also took pictures of smoke patterns, generated by dry ice, to capture airflow patterns around the model structures and measured evaporation rates from the model storage tanks and lagoons. They reconfigured the model farm in different ways and repeated their measurements.

What Did They Learn?

Buildings situated perpendicular to airflow disrupted downwind airflow to a greater extent than buildings parallel to airflow. “These studies show how much the placement of animal housing units and manure-storage facilities can work in combination with prevailing winds and site conditions to affect the distance that potential agricultural air emissions can travel,” says Sauer. “They strongly indicate that we should be able to reduce the downwind air-quality impacts from animal production by modifying the layout of a production facility.”

Using model farm buildings, silos, and trees (wire mesh coils serve as trees), agronomist Guillermo Hernandez (left) and soil scientist Tom Sauer evaluate the effect of model arrangements on airflow. Hernandez makes an adjustment to one of the highly sensitive probes as Sauer monitors the real-time data signal. Photo courtesy of the USDA Ag Research Service.

Additional Information

  • “Tunnel Vision” Tracks Emission Dispersal was published in the September 2008 issue of Agricultural Research magazine.
  • This research is part of Air Quality, an ARS national program (#203).
  • Thomas J. Sauer and Jerry Hatfield are with the USDA-ARS National Soil Tilth Laboratory, 2110 University Blvd., Ames, IA 50011-3120; phone (515) 294-3416 [Sauer], (515) 294-5723 [Hatfield].

October, 2008 Newsletter Articles

  • EPA Releases “Report on the Environment 2008”
  • Poultry Waste Management Symposium To Be Held October 21-23
  • US Geological Survey National and Regional Trends in Ground-Water Quality

This summary was adapated from materials provided by the USDA ARS. It has not been peer reviewed and represents the newsletter editor’s summary of the research.

Simultaneous Treatment of Odor, Volatile Organic Compounds, Hydrogen Sulfide, Ammonia, and Pathogens With Ultraviolet Light

Printer friendly version of this summary.

Is It Feasible to Treat or Reduce Several Air Emissions from Pig Barns at Once?

The simultaneous treatment of odors, gases, airborne pathogens using novel ultraviolet (UV) treatment project addresses a critical need of the control of odor and pathogens generated in commercial swine production. The same technology could potentially be used for other species (e.g., poultry) that are housed in mechanically-ventilated barns. This study will test the potential for using currently available technology for the simultaneous degradation of most offensive odorants, ammonia (NH3), and model pathogens (SIV, BVDV). Such UV light-based technology is suitable for application for ventilation air and could be applied to exhaust air (to treat emissions) and inlet air (to prevent the spread of infectious diseases) for new and existing operations.

The long-term goal is to develop a cost-effective technology for the simultaneous treatment of odor and pathogens in swine and possibly poultry housing in order to limit their impact on air quality and health (both human and animal).

Activities

A standard gas/odor system for generating and measuring gases is being used for lab-scale experiments. The system generates 13 odorous gases including hydrogen sulfide (H2S), mercaptans, volatile fatty acids (VFAs), and phenolic compounds responsible for swine odor. NH3 gas and its removal is included. Odor measurement with a standard ASTM method are conducted by the Olfactometry Lab.

Did UV Light Reduce Pathogens and Odorants?

We measured the effectiveness of odor treatment and pathogen inactivation in laboratory scale. Almost 100% removal was achieved for all the compounds tested except H2S and dimethylsulfide using only 1 sec irradiation. Removals of H2S and dimethylsulfide are also significant. Longer UV irradiation times resulted in complete percent reduction of target compounds and odor. Of specific interest is very efficient removal of p-cresol which has been recognized as priority odorant responsible for the characteristic livestock odor. Treatment cost of $0.25 per pig and continuous operation during growing cycle was estimated when the lab-scale results were extrapolated to typical ventilation rates and electricity cost at a swine finish operation in rural Iowa.

Why is This Important?

Comprehensive solutions to swine aerial emissions are expected to be even more urgent in the future. Thus, the proposed study addresses several critically important issues confronting pork and poultry producers, but also has a broader applicability to homeland security, human/animal health, indoor air quality and hazardous waste treatment.

For More Information

Authors: Jacek Koziel, Jeff Zimmerman, Steven Hoff, Hans van Leeuwen, William Jenks, Iowa State University

Read the following articles or visit the Iowa State University odor research website.

Yang, X., Koziel, J.A., Cai L., Hoff, S. et al. Novel treatment of VOCs and odor using photolysis. ASABE Annual International Meeting, 2007, Minneapolis, MN, paper No. 074139.

Koziel, J.A., X. Yang, T. Cutler, S. Zhang, J. Zimmerman, S. J. Hoff, W. Jenks, Y. Laor, U. Ravid, R. Armon, J.H. van Leeuwen. 2008. Mitigation of odor and pathogens from CAFAs with UV/TiO2: exploring cost effectiveness. In the proceedings of the Mitigating Air Emissions From Animal Feeding Operations Conference. Des Moines, May, 2008.

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Siting Swine Facilities Using Iowa State’s Community Assessment Model

Printer friendly version of this summary.

Does It Make a Difference If a New Pig Barn is Built In an Area With Existing Barns?

A model, called the Community Assessment Model for Odor Dispersion (CAM), was developed to predict receptor odor exposure from multiple swine production sources. The intended use of CAM was to provide a tool for evaluating the odor exposure to receptors in a community when siting new swine production systems and how a change in odor control technology alters the odor exposure to receptors.

CAM can handle up to 20 swine production sources with up to 100 receptors in a community of any size. CAM predicts the number of hours of exposure to weak (2:1) and greater or identifiable (7:1) and greater odors and these are used to assess siting options.

Activities

CAM has been used in the state of Iowa for over 150 specific cases since June, 2005. The implementation of CAM has been a voluntary process, initiated by the farmer and implemented through a joint effort between the Coalition to Support Iowa’s Farmers (CSIF), the Iowa Pork Industry Center (IPIC), and faculty with Iowa State University’s College of Agriculture and Life Sciences. The use of CAM requires on on-site visit to assess and map community receptors and existing animal-related odor sources.

The mapped data is then brought to the Department of Agricultural and Biosystems Engineering where one of two faculty members implement CAM. A one-page report is generated and this report is given to the farmer, through a follow-up on-site visit with an IPIC staff member. At the conclusion of a CAM modeling run, a staff member from IPIC conducts a follow-up site visit with the farmer to explain results of CAM predictions. The estimated total expense (currently free to the farmer) to implement CAM is $1,000 per siting case.

What We Have Learned

Modeling odor dispersion by itself is a relatively straight-forward procedure. The difficulty arises when a modeling procedure is to be used by farmers and community planners to guide facility siting choices. Any modeling procedure developed must be based on an accepted modeling platform, must incorporate site parameters that can be applied equitably to a wide range of field conditions, must have the ability to easily handle multiple sources and multiple receptors, and must predict odor concentration that is conservative for the receptor without being overly restrictive for the farmer. Any odor dispersion model that incorporates these considerations and shows good agreement with field collected odor data could be considered for siting purposes.barns and manure storage pond

Why is This Important?

Having the ability to fairly and accurately determine the adequacy of a proposed siting choice is imperative for the future expansion of animal agriculture.

For More Information

Authors: Steven Hoff, hoffer@iastate.edu or (515) 294-6180, Jay Harmon and Colin Johnson, Iowa State University

  • Hoff, S. J. and D. S. Bundy. 2003. Modeling odor dispersion from multiple sources to multiple receptors. In: Proceedings of the International Symposium on Gaseous and Odour Emissions from Animal Production Facilities. Norsens, Denmark. June 1-4, 2003. pp 331-339.
  • Hoff, S. J., D. S. Bundy, and J.D. Harmon. 2008. Modeling receptor odor exposure from swine production sources. Applied Engineering in Agriculture (in-review).
  • Photo CC 2.5 Rick Koelsch

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Research Summary: Black Soldier Fly Prepupae – A Compelling Alternative to Fish Meal and Fish Oil

Research summaries are a brief description of current research being conducted throughout the country. If you would like to contribute information from your research, please post a comment with your contact information and we will get the form to you.

Printer friendly version of this summary.

Research Purpose

Dried black soldier fly (Hermetia illucens) prepupae contain 42% protein and 35% fat (Newton et al. 1977). Live prepupae are 44% dm and are easily dried for long term storage. As a component of a complete diet they have been found to support good growth of chicks (Hale 1973), swine (Newton 1977), rainbow trout (St-Hilaire et al. 2007)) and catfish (Newton et al. 2004). Peer reviewed studies show that prepupae meal can replace at least 25% of the fish meal in a diet with no reduction in gain or feed conversion ratio (FCR) in rainbow trout (St-Hilaire et al. 2007a) or channel catfish (Newton et al. 2004).

Separation of the prepupae fat and protein would allow for formulation of more balanced diets and produce a meal with over 60% protein. Removal of the chitin would further enhance the protein content and enhance digestibility as well as produce another valuable product. Blind taste tests with tilapia and channel catfish fed diets containing Hermetia larvae indicated no significant difference between those diets and commercial diets (Bondari & Sheppard. 1981).

Most experimental Hermetia prepupae production has been done with manure as a feedstock, but they have also been produced on grain based diets and other organic products such as waste food including meats and dairy products unacceptable for vermiculture. The addition of fish offal to manure has been shown to increase the omega-3 fatty acid content of prepupae to approximately 3% (St-Hilaire et al. 2007b).

Manure digestion has been extensively studied for its potential to reduce nutrient overloads near high density animal production. Hermetia larval digestion assimilates nearly 3/4 of the manure nutrients into Hermetia prepupal biomass, a high quality feedstuff. After larval digestion, the residual material can be used as a soil amendment or vermiculture media. The mature larvae form a prepupae which self-harvests. In addition, larval digestion of manure eliminates or reduces house fly production and noxious odors (Lorimor et al. 2001).

Food Safety and Bacteriological Considerations

Food safety and bacteriological considerations in using manure fed Hermetia prepupae are favorable. Hermetia larval activity significantly reduced E. coli 0157:H7 and Salmonella enterica in hen manure (Erickson et al. 2004). There is a substantial body of scientific literature on using various fly larvae (face fly, house fly, blow flies and the black soldier fly), reared in animal manure as animal feed.

Researchers in China, the USSR, the USA, Mexico, and Eastern Europe have fed these to poultry, swine, shrimp, several species of fish, turtles and frogs; with no reported health problems. Researchers in Chile have studied value recovery from swine manure producing house flies as a feedstuff. They reported finding anti-microbial factors in the house fly larvae. These natural antibiotics may reduce the chance of the feedstuff transmitting pathogens, and actually improve animal health, while reducing pathogen content in the digested manure that may be used to fertilize food crops.

Bacterial interactions of maggots in manure and in wound cleaning appear to be similar. The beneficial effect of maggots is very well studied and understood in medicine in the discipline of “maggot debridement therapy” (MDT). This life saving therapy is seeing more use with the increasing prevalence of drug resistant bacterial infections (Sherman and Wyle. 1996).

The sterile maggots used in this therapy are believed to enhance the healing of otherwise intractible wounds in several ways, the chief one being elimination of pyogenic bacteria. Kosta et al. (2001) reported progressively greater destruction of green fluorescent protein-producing E. coli as they progressed through the gut of sterile grown Lucilia sericata, a maggot commonly used in MDT. A similar antagonism seems to occur between Hermetia larvae (and other maggots) in manure.

Production Possibilities and Improvements to the System

In unrefined pilot-scale production systems with swine manure, 12-15% dry matter feed conversion rates (FCRdm) have been seen. In small laboratory bioassays, swine manure has been converted to prepupae at up to 24% FCRdm. Refining production systems may result in FCRdm of over 24%.

If Hermetia larvae digested all of the manure from the 40,000 feeder pigs (avg. wt = 155 lb) on a large swine farm and converted it into prepupae at a FCR of 16%, they would produce about 6,000 lb of dried prepupae each day. Extending this system to the approximately 67 million swine in the United States, about 5,000 tons of dried prepupae meal would be produced per day (1.8 million tons per year). At the same time manure nutrients that could cause environmental problems would be assimilated into a valuable feedstuff.

Hermetia culture as practiced to this point is admittedly crude and many improvements in efficiency can be made. The same is true for the raw insect product, the prepupae. The self-harvested prepupae can be separated into oil, protein meal and chitin to make much better use of these components. Prepupae meal production would probably cost less than fish meal production since Hermetia prepupae are 44% dry matter and fish are about 25% dry matter, predicting lower drying costs for Hermetia prepupae meal. Collection costs for Hermetia commercial scale operations are expected to be less than fish harvest by purse seining. It takes over one vessel-ton-week to harvest a metric ton of (25% dm) menhaden in the Gulf of Mexico (Gulf States Marine Fisheries Commission 2002 Menhaden Management Plan).

Environmental Problems Solved

Many environmental problems associated with manure storage and management will be solved by Hermetia prepupae production. In a typical field trial conducted in Georgia, Hermetia larval digestion of swine manure reduced nutrients as follows: N-71%, P-52%, K-52%, Al, B, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, Pb, S., and Zn were reduced 38 to 93%.

In lab trials, noxious odors produced by decomposing manure were reduced or eliminated by Hermetia larval digestion. The gases in question were analyzed with chromatography associated with mass spectroscopy from headspace air in vials holding manure with and without larvae. The chemicals which were affected include the methylester of heptanoic acid, acetic acid, 2-furnaocarboxaldehyde, propanoic acid, butanoic acid, isovaleric acid, valeric acid, caproic acid and p-cresol. These were greatly reduced or eliminated by larval activity within 24 hours. Mature Hermetia prepupae self-harvest at 44% dm for the live product.

Producing prepupae meal will require much less energy (diesel) than capturing and drying 25% dm fish from the ocean. The enterprise of prepupae production from manure will give problematic manure a value, foster its better management and reduce the negative impact on the environment.

Aesthetic Considerations

There are some who will object to using manure fed insects as an aquaculture feedstuff even though all scientific evidence is positive. Those objecting on aesthetic principle should consider that organic vegetables (highly valued by many) are one trophic level removed from manure while fish fed on Hermetia prepupae are two tropic levels removed. Also consider that Hermetia larvae are known to reduce pathogens in manure and vegetables do not.

Summary

In relatively small scale trials, Hermetia illucens has been extensively studied for over 30 years as a potential feedstuff for fish and other food animals, showing success in almost all cases. For the sake of brevity, many very positive studies were omitted here. As outlined above, large quantities of this high quality feed could be produced and simultaneously solve other agricultural and environmental problems. A broadly supported research program into the production and utilization of Hermetia illucens prepupae as a fish meal substitute would have significant positive economic and environmental impact.

For More Information

Authors: G.L. Newton, D.C. Sheppard, and G.J. Burtle, University of Georgia

  • Bondari, K., and D. C. Sheppard. 1981. Soldier fly larvae as feed in commercial fish production. Aquaculture. 24:103-109.
  • Erickson, M. C., M. Islam, C. Sheppard, J. Liao, and M. P. Doyle. 2004. Reduction of Escherichia coli 0157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Protection. 67:685-690.
  • Hale, O. M. 1973. Dried Hermetia illucens larvae (Stratiomyidae) as a feed additive for poultry. J. Ga. Entomol. Soc. 8:16-20.
  • Lorimor, J., C. Fulhage, R. Zhang, T. Funk, R. Sheffield, D. C. Sheppard, G. L. Newton. 2006. Manure Management Strategies and Technologies. In: J. M. Rice, D. F. Caldwell, F. J. Humenik, eds. Animal and the Environment: National Center for Manure and Animal Waste Mangement White Ppaers. ASABE, St. Joseph, MI. P. 409-434.
  • Kosta, Y. M., J. Miller, M. Mumcuoglu, M. Friger, and M. Tarshis. 2001. Destruction of bacteria in the digestive tract of the maggot of Lurilia sericata (Diptera: Calliphoridae). J. Med. Entomol. 38:161-166.
  • Newton, G. L., C. V. Booram, R. W. Barker, and O. M. Hale. 1977. Dried Hermetia illucens larvae meal as a supplement for swine. J. Anim. Sci. 44:395-399.
  • Newton, L., C. Sheppard, W. Watson, G. Burtle, and R. Dove. 2004. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Univ. Of Georgia, College of Agric. & Environ. Sci., Dept. Of Anim. & Dairy Sci. Annual Report.
  • Sherman, R. A. And F. A. Wyle. 1996. Low-cost, low maintenance rearing of maggots in hospitals, clinics, and schools. Am. J. Trop. Med. Hyg. 54:38-41.
  • St-Hilaire, S., C. Sheppard, J. K. Tomberlin, S. Irving, L. Newton, M. A. McGuire, E. E. Mosley, R. W. Hardy and W. Sealey. 2007a. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquaculture Soc. 38:59-67.
  • St-Hilaire, S., K. Cranfill, M. A. McGuire, E. E. Mosley, J. K. Tomberlin, L. Newton, W. Sealey, C. Sheppard, and S. Irvin. 2007b. Fish ofal recycling by the black soldier fly produces a foodstuff high in Omega-3 fatty acids. J. World Aquaculture Soc. 38:309-313.

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.