Value of Manure Library By Season

Winter

Spring

Summer

Fall

Authors/Sponsors

The project team assembling this product includes Amy Schmidt, Leslie Johnson, and Rick Koelsch, University of Nebraska-Lincoln; Erin Cortus and Melissa Wilson, University of Minnesota; and Dan Andersen, Iowa State University. These resources represent our recommendations for discussing the Value of Manure.

This product was assembled with financial assistance from the North Central Region Sustainable Agricultural Research and Education program. NCR-SARE is one of four regional offices that run the USDA Sustainable Agriculture Research and Education (SARE) program, a nationwide grants and education program to advance sustainable innovation to American agriculture.

Value of Manure Library for Educators and Advisors

Purpose

Manure is a resource that comes with many benefits and challenges.  This library is designed to provide educators and advisors with access to recommended resources that will assist you in your discussion of manure’s benefits and challenges.  Educators, please feel free to share and re-purpose educational products in this library with local audiences. Advisors, the library’s resources shall provide you with decision tools and educational products for enriching your discussions with clientele and rural community residents.

How to find materials

For those seeking specific resources, materials are organized visually by topic area and type of media. For those that would rather search materials more linearly, there is a grid version available.

In all views, there is a search button in the top right corner that looks like a magnifying glass and an expansion button that looks like two outward pointing arrows to view in full screen.

By Topic Area

Preview of manure value library database sorted by topic.
    • Manure as a fertilizer
    • Manure economics
    • Soil quality/health effects
    • Water quality effects
    • Use in organic systems
    • Neighbors
    • Regulatory concerns
    • Logistics

By Media Type:

Preview of manure value library database sorted by purpose.
    • Social media
    • Short news articles and web pages
    • Educational publications
    • Decision support tools
    • Recommended research articles

 

Instructions for Re-purposing Educational Content

Our team encourages and welcomes educators and advisors re-purposing of many of the social media and web page/news article resources found in this library.  Would these resources be helpful to you for Tweeting to your followers? Assembling talking points for a local radio presentation or discussion with a county board?  Or adding an article to local print media or your blog?

Example of social media graphic to be re-purposed.
    • Twitter Posts:  A broad range of Twitter posts, graphics with an educational message and short text introduction, are included for use with your social media connections.  Please re-purpose these for your local use. We ask that you maintain the “N Extension” and “WSA” logos in your re-purposed post.  You may replace the “Manure Happens. Take Credit” caption and the “Learn more at: http:// ________”  with an appropriate recognition of your organization and/or a web page that you would like to promote.
    • Web Page/News Articles:  Many of these library products can be repurposed for a variety of local uses.  News articles and web pages may be revised to add local information with the new authors name included if the original authors continue to be listed.
    • Any Educational Products:  Any of the Library resources may be used as talking points for a local radio broadcast or community group presentations. Please recognize the original authors and resource title in your presentation.

 

Is something missing from our library?

We welcome your suggestions of resources that you have found beneficial in your educational or advisory role.  Please email any of the project team members with your suggestions or submit them via our google form for our consideration.

Authors/Sponsors

The project team assembling this product includes Amy Schmidt, Leslie Johnson, and Rick Koelsch, University of Nebraska-Lincoln; Erin Cortus and Melissa Wilson, University of Minnesota; and Dan Andersen, Iowa State University.  These resources represent our recommendations for discussing the Value of Manure.

This product was assembled with financial assistance from the North Central Region Sustainable Agricultural Research and Education program.  NCR-SARE is one of four regional offices that run the USDA Sustainable Agriculture Research and Education (SARE) program, a nationwide grants and education program to advance sustainable innovation to American agriculture.

Value of Manure Library By Media Type

Media types include social media, news articles, web pages, educational publications, decision support tools, and recommended research articles.

Authors/Sponsors

The project team assembling this product includes Amy Schmidt, Leslie Johnson, and Rick Koelsch, University of Nebraska-Lincoln; Erin Cortus and Melissa Wilson, University of Minnesota; and Dan Andersen, Iowa State University. These resources represent our recommendations for discussing the Value of Manure.

This product was assembled with financial assistance from the North Central Region Sustainable Agricultural Research and Education program. NCR-SARE is one of four regional offices that run the USDA Sustainable Agriculture Research and Education (SARE) program, a nationwide grants and education program to advance sustainable innovation to American agriculture.

Value of Manure Library By Topic Area

Topics include agronomics, economics and yield, soil health/quality, water quality, organic systems, neighbors, regulations and logistics.

Authors/Sponsors

The project team assembling this product includes Amy Schmidt, Leslie Johnson, and Rick Koelsch, University of Nebraska-Lincoln; Erin Cortus and Melissa Wilson, University of Minnesota; and Dan Andersen, Iowa State University. These resources represent our recommendations for discussing the Value of Manure.

This product was assembled with financial assistance from the North Central Region Sustainable Agricultural Research and Education program. NCR-SARE is one of four regional offices that run the USDA Sustainable Agriculture Research and Education (SARE) program, a nationwide grants and education program to advance sustainable innovation to American agriculture.

Value of Manure Library Grid View

Authors/Sponsors

The project team assembling this product includes Amy Schmidt, Leslie Johnson, and Rick Koelsch, University of Nebraska-Lincoln; Erin Cortus and Melissa Wilson, University of Minnesota; and Dan Andersen, Iowa State University. These resources represent our recommendations for discussing the Value of Manure.

This product was assembled with financial assistance from the North Central Region Sustainable Agricultural Research and Education program. NCR-SARE is one of four regional offices that run the USDA Sustainable Agriculture Research and Education (SARE) program, a nationwide grants and education program to advance sustainable innovation to American agriculture.

Transforming Manure from ‘Waste’ to ‘Worth’ to Support Responsible Livestock Production in Nebraska

The University of Nebraska – Lincoln (UNL) Animal Manure Management (AMM) Team has supported the environmental stewardship goals of Nebraska’s livestock and crop producers for many years using multiple traditional delivery methods, but recently recognized the need to more actively engage with clientele through content marketing activities. A current programming effort by the AMM Team to increase efficient manure utilization on cropland in the vicinity of intensive livestock production is the foundation for an innovative social media campaign.

What did we do?

content marketing plan
Figure 1. Content marketing plan to direct traffic to the AMM Team website.

While traditional extension outputs remain valuable for supporting the needs of clientele who actively seek out information on a topic, “content marketing” is a strategic tactic by which information is shared to not only attract and retain an audience, but to drive impactful action. Social media platforms are popular tools for delivery of current, research-based information to clientele; a key barrier to effectively using social media for content marketing by the project directors has been time. For instance, using Twitter efficiently requires regular attention to deliver messages frequently enough to remain relevant and to do so at times when user activity characteristics demonstrate the greatest opportunity for posts to be viewed and disseminated. Because this proved to be a challenge, a content marketing plan (Figure 1) was initiated using “waste to worth” as the topic of focus.

Three major components were identified as being critical to the success of the project (Figure 2): design of high-quality graphics that are tied to online content and resources and are suitable for use on Twitter, Facebook, or other social media platforms; development of a content library containing packaged content (graphic + suggested text for social media posts) that is easy to navigate and available for partners to access and utilize; and development  of a communication network capable of reaching a broad audience.

Graphics

circles containing graphics, content library and communication network
Figure 2. Components identified for successful content marketing effort.

An undergraduate Agricultural Leadership, Education and Communication (ALEC) student was recruited to support graphical content development using three basic guidelines: 1) Eye-catching but simple designs; 2) Associated with existing content hosted online; and 3) Accurate information illustrated Canva.com was utilized by team members  to design, review and edit social media content (Figure 3).

Content Library

Completed graphics are downloaded from Canva as portable network graphics (*.png) and saved to Box folders, by topic, using a descriptive title. When posting to social media, hashtags, mentions and links to other content help (a) reach users who are following a specific topic (e.g. #manure), (b) recognize someone related to the post (e.g. @TheManureLady) and (c) direct users to more content related to the graphic (e.g. URL to online article). For our content library, each graphic is accompanied by a file containing recommended text (Figure 4) that can be copied and pasted into Twitter or Facebook.

content example graphics
Figure 3. Graphical content examples for the “waste to worth” project
content example with sample text
Figure 4. Sample text to accompany a related image when posting on social media

Communication Network

content distribution network diagram
Figure 5. Content distribution network diagram.

Disseminating our messages through outlets outside the University was identified as a critical aspect of achieving the widespread message delivery that was desired. As such, agricultural partners throughout Nebraska were asked to help “spread the word about spreading manure” by utilizing our content in their social media outputs, electronic newsletters, printed publications, etc. Partners in this project include nearly 30 livestock and crop commodity organizations, media outlets, agricultural business organizations, and state agencies in Nebraska (Figure 5).

The effort to distribute content through the established communication network was launched in September 2018. Each month, three to four graphics with accompanying text are placed in a Box file to which all partners in the distribution network have access. Partners are notified via e-mail when new content is released. Folders containing prior months’ releases remain available to allow partners to re-distribute previous content if they wish.

What we have learned?

Since launching, 34 partnering organizations (Figure 6) have helped disseminate content to 50,000+ producers, advisors, allied industry members, and related professionals each month. Invited media appearances (radio and television) by team members have increased substantially in the past six months. For instance, the Nebraska Pork Producers Association hosts a weekly “Pork Industry Update” on a radio station that is part of the Rural Radio Network. Team members have recorded numerous interviews for broadcast during this weekly programming spot.

parter organizations
Figure 6. Partner organizations contributing to content distribution.

Page views within the AMM Team’s website (manure.unl.edu) increased by 139% from the fourth quarter of 2017 to the fourth quarter of 2018. Additional analytics are being collected to better define routes by which traffic is reaching the AMM Team’s website.

Future Plans

A survey is being prepared for distribution to audiences targeted through this project to assess impacts of this effort on changes in knowledge and behavior related to responsible use of manure in cropping systems, recognition of the AMM Team as a trusted source for manure and nutrient management information in Nebraska, and quality of AMM Team outputs.

Author

Amy Millmier Schmidt, Associate Professor, Biological Systems Engineering and Animal Science, University of Nebraska-Lincoln (UNL), aschmidt@unl.edu

Co-authors

Rick Koelsch, Professor, Biological Systems Engineering and Animal Science, UNL

Abby Steffen, UG Student, Ag Leadership, Education and Communication, UNL

Additional Information

Sign up for monthly notifications about new content from the UNL Animal Manure Management team at https://water.unl.edu/newsletter. Follow team members and the AMM Team.

Animal Manure Management Team    Amy Schmidt

Twitter: @UNLamm    Twitter: @TheManureLady

Facebook: https://www.facebook.com/UNLamm/    Facebook:  https://www.facebook.com/TheManureLady/

 

Rick Koelsch

Twitter: @NebraskaRick

Acknowledgements

Funding sources supporting this effort include We Support Ag, the Nebraska Environmental Trust, and the North Central Sustainable Agricultural Research and Education (NC-SARE) program.

 

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.

Performance and Payback of a Solid-Liquid Separation Finishing Barn

A 1200-hd solid-liquid separation finishing barn was built in Missouri for improved manure management and air quality. The facility has a wide V-shaped gutter below slatted flooring (Figure 1), which continuously drains away liquids.  A scraper is used to collect the solids, which are then managed separately. Field sampling and research were conducted to evaluate the performance of the solid-liquid separation finishing barn in improving manure nutrient management, potential nutrient/water recycling based on filtration, and barn construction and operating costs.

What did we do?

The barn (built in 2010) was closely monitored for manure production and nutrient content, and operating costs. Laboratory-scale pretreatments and filtrations were conducted to evaluate the practicality of nutrient/water recycling from the separated liquid manure.

What we have learned?

The daily liquid manure production averaged 885 gallons and daily solid manure production averaged 299 gallons (about ¼ of the total manure volume). The separation system removed 61.7%, 41.7%, 74.8%, and 46.2% of the total manure nitrogen, ammonium, phosphorous, and potassium, respectively, with the collected solids. The filtration results indicate that the microfiltration and reverse osmosis were time and energy intensive, which was probably constrained by the relatively small-scale unit (inefficient compared with larger units), small filter surface area, and high concentration of dissolved nutrients.

The construction cost of the solid-liquid separation barn with solid manure storage was $323,000 ($269/pig-space, in 2010), 17% higher compared to the traditional deep-pit barn ($175 to $230/pig-space). It is likely that the solid-liquid separation barn will become less expensive when more barns of similar design are built, and the conveyor system can be improved and simplified for less maintenance and lower costs. Additional electricity cost was $331 per year for daily operation of the scraper and conveyor systems, and pumping the separated liquid manure fraction. The additional maintenance cost of the scraper system averaged $1,673/year. A net gain of $3,975/year was observed when considering the value of the separated manures, cost of land application, and annual maintenance cost.

A payback period of 15.1 years on the additional investment was estimated, when compared with the popular deep-pit operation. However, the payback period can be reduced by many factors, including improved conveyor system and growing popularity of the barn design in an area. When the distance to transport the slurry manure was increased from 5 miles to 7.5 and 10 miles, the payback periods became 12.7 and 11.3 years, respectively. The solid-liquid separation barn was shown to have better air quality when compared with deep-pit barns based on monthly measurements of ammonia and hydrogen sulfide concentrations.

Impacts/Implications of the Research.  

This study monitored the manure production of a commercial finishing barn utilizing a solid-liquid separation system. Overall, we can conclude that the final results obtained from monitoring the total manure production rate, air quality exiting the barn fans, and the pig growth rates made sense relative to other comparative sources. The overall results indicate that the barn design can attain some valuable benefits from separating the solid and liquid streams.  About a quarter of the manure volume was collected and managed as nutrient-dense solid manure (defined as ‘stackable’). The solid manure held 80% of the total solids and nearly 75% of the phosphorous.

Take Home Message

There are alternative barn designs and manure management systems (relative to lagoon and deep-pit operations) that should be considered when planning for a new operation or expansion. Considerations should include the need to better manage manure nutrients and improve air quality for human and animal occupants.

Future plans

Further consideration of the manure management, including work load and major- and micro-nutrients need to be furthered analyzed. Future research may look into application of a larger-scale crossflow system to see if nutrient removal and flow rates can be improved significantly. Future research may focus on improving manure filtrate flow, and determining the cost of installation and upkeep for a filtration unit that can operate at the level of a farm operation. Extrapolating the costs off of bench-scale model does not seem remotely indicative of the true cost, due to improved efficiency and power of larger unit.

Authors

Lim, Teng (Associate Professor and Extension Agricultural Engineer, Agricultural Systems Management, University of Missouri, limt@missouri.edu)

Brown, Joshua (University of Missouri); Zulovich, Joseph (University of Missouri); and Massey, Ray (University of Missouri).

Additional information

Please visit https://www.pork.org/research/sustainability-evaluation-solid-liquid-manure-separation-operation/ for the final report, and ASABE Paper No. 1801273 (St. Joseph, Mich.: ASABE. DOI: https://doi.org/10.13031/aim.201701558) for more information.

Acknowledgements

Funding for this research project was provided by the National Pork Checkoff and University of Missouri Extension.

Figure 1. The V-shape pit with automated manure scraper and trough at center (Left), and gravity draining of liquid manure from the trough to the sump pit (Right).
Figure 1. The V-shape pit with automated manure scraper and trough at center (Left), and gravity draining of liquid manure from the trough to the sump pit (Right).
Figure 2. The storage shed for solid manure to the north of the modified scraper barn (Left), and stored solid manure (Right).
Figure 2. The storage shed for solid manure to the north of the modified scraper barn (Left), and stored solid manure (Right).

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.

Energy Consumption in Commercial Midwest Dairy Barns

Consumer interest and concern is growing in regards to sustainability of livestock production systems. Demand for reduced carbon emissions within agricultural systems has been growing along with increasing demand for food. Baseline fossil fuel consumption within agricultural systems, including dairy production, is scarce. Therefore, there is a need to discern where and how fossil energy is being used within dairy production systems. Determining baseline energy use is the first step in investigating the demand for a reduced carbon footprint within dairy production systems. The objective of this study was to measure total electricity use and determine specific areas of high energy consumption in commercial dairy barns located in the Upper Midwest of the United States.

What did we do?

Four commercial dairy barns representative of typical Midwest dairy farms and located in west central Minnesota were evaluated in the study. The dairy farms were: 1) a 9,500 cow cross-ventilated barn with a rotary milking parlor (Farm A), 2) a 300 cow naturally-ventilated barn with stirring fans for air movement and 6 automatic milking systems (Farm B), 3) a 200 cow naturally-ventilated barn with stirring fans for air movement and a parabone milking parlor (Farm C), and 4) a 400 cow naturally-ventilated barn with stirring fans for air movement and a parallel milking parlor (Farm D).

Electricity use was monitored from July 2018 to December 2018 with a goal of collecting two years of total energy usage. Two-hundred ninety-two  electric loads across the four farms were monitored on the farm side of the electric utility meter to evaluate areas of highest energy usage (Figure 1). Some of the monitored electric loads included freestall barn fans, water heaters, compressors, chillers, manure pumps, and pressure washers. The electric loads were monitored by data loggers (eGauge, Boulder, CO) and electric current sensors at the circuit panels. Electrical use data (kWh) of each load were collected and analyzed on a monthly basis. In addition, monthly inventory of cows on farm, cows milked per day, and milk production was recorded. Bulk tank production records (milk, fat percentage, protein percentage, and somatic cell count) were also recorded.

Figure 1. Data loggers with electric current sensors installed on farm circuit panel boxes.
Figure 1. Data loggers with electric current sensors installed on farm circuit panel boxes.

What have we learned?

Based on preliminary results, fans were the largest electrical load across all four dairy farms. Fan usage during the summer ranged from 36 to 59% of the total electricity measured (Figure 2). Regular maintenance, proper control settings, design, sizing, location, selecting energy efficient fans and motors, and other factors all could influence the efficiency of these ventilation/cooling systems. Farms B, C, and D had greater electricity usage across all months for milk cooling (compressors and chillers) than Farm A. This is likely due to the fact that Farm A does not utilize bulk tanks to store milk, but instead, milk is directly loaded onto bulk milk trucks. Lighting use ranged from 7 to 21% of the total electricity use measured across the four farms, which suggests there is potential to reduce energy usage by upgrading to more efficient lighting systems such as LEDs. For heating, energy usage includes water heating, heating units in the milking parlor or work rooms, waterer heating elements, and generator engine block heaters. Average monthly heating use ranged from 5% of electricity used in Farm A to 32% of electricity used in Farm C.

Figure 2. The average monthly electrical use measured by data loggers and the percent used by each electrical load category. The average monthly total electricity in kWh is displayed at the top of each bar.
Figure 2. The average monthly electrical use measured by data loggers and the percent used by each electrical load category. The average monthly total electricity in kWh is displayed at the top of each bar.

Future plans

Based on the preliminary analysis, clean energy alternatives and energy-optimized farms will be modeled as clean energy alternatives for Minnesota dairy facilities. An economic analysis will also be conducted on the clean energy alternatives and farms. Potential on-site renewable electric generation may supply some or the entire electric load allowing the buildings to approach net-zero (producing as much energy as is used).

The results of this study provide recent energy usage for farm energy benchmarks, agricultural energy policy, economic evaluations, and further research into dairy farm energy studies. The data will also be useful to producers who are searching for areas for reduced energy usage in their own production systems. Improving the efficiency of electrical components in dairy operations could provide opportunities to improve the carbon footprint of dairy production systems.

Authors

Kirsten Sharpe, Animal Science Graduate Research Assistant, West Central Research and Outreach Center (WCROC), Morris, MN, sharp200@umn.edu

Bradley J. Heins, Associate Professor, Dairy Management, WCROC, Morris, MN

Eric Buchanan, Renewable Energy Scientist, WCROC, Morris, MN

Michael Cotter, Renewable Energy Researcher, WCROC, Morris, MN

Michael Reese, Director of Renewable Energy, WCROC, Morris, MN

Additional information

The West Central Research and Outreach Center (WCROC) has developed a Dairy Energy Efficiency Decision Tool to help provide producers a way to estimate possible energy and costs savings from equipment efficiency upgrades. The tool can be used to evaluate areas of a dairy farm that may provide the best return on investment for energy usage. Furthermore, a guidebook has been developed for Optimizing Energy Systems for Midwest Dairy Production. This guidebook provides additional information about energy usage issues as well as a decision tool. More information may be found at https://wcroc.cfans.umn.edu/energy-dairy

Acknowledgements

The funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR).

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.