Balancing Earth, Air and Fire In The Kansas Flint Hills

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Native Americans placed great value on the four elements of life,  earth, water, air and fire. They recognized, as we do today, that fire is the most powerful land management tool. The 4.8 million acre Flint Hills region of Kansas is the largest remaining expanse of tallgrass prairie in North America.   Prescribed fire is routinely practiced in the region to enhance livestock forage quality, control invasive species, provide grassland wildlife habitat and improve plant vigor.  But where there is fire, there is smoke, and there are public health concerns when excessive smoke is in the atmosphere.   Ground level ozone can have serious public health consequences and major cities adjacent to the Flint Hills, have recorded excessive ozone levels resulting from Flint Hills prescribed fire.   A collaborative effort including the Kansas Dept of Health & Environment, EPA,  K-State Research & Extension, Kansas Livestock Association and other groups completed the Flint Hills smoke management plan in December, 2010, with the objective of reducing health concerns from prescribed fire, while retaining it as a land management tool.  The plan established a  website of “best smoke management practices” and a comprehensive education and outreach effort for land managers was implemented, involving prescribed fire schools, news articles and radio airplay.   Results of the plan are positive, indicating  that Kansas has responded to the smoke issue appropriately and will retain prescribed fire as a management practice that maintains both the tallgrass prairie of the hills, and the air quality of adjacent metro areas.  The inter-relationships of earth, water, air and fire are continual, each impacting the other.   The Kansas Flint Hills now has a plan to ensure harmony of these essential elements of life.

A prescribed fire in the Kansas Flint Hills

Prescribed Fire in Tallgrass Prairie

The Flint Hills Smoke Management Plan is a collaborative effort designed to maintain the benefit of prescribed fire on the private grasslands of the Flint Hills, while also protecting the air quality of ajor metropolitan areas such as Kansas City and Wichita.   The Flint Hills have particular environmental implications, as they are the largest expanse of tallgrass prairie remaining in North America.

What Did We Do?

Kansas Department of Health and Environment wrote the plan, but embraced those involved with the issue, including K-State Research and Extension, the KS Livestock Association, Farm Bureau, Tallgrass Legacy Alliance, KS Prescribed Fire Council, Cities of Wichita and Kansas City, Natural Resource Conservation Service, KS Dept. of Wildlife Parks & Tourism to develop a plan that would address the goals of all those involved.   A website was developed to give ranchers day by day information regarding smoke emission and direction from a prescribed fire that day or the following day.

What Have We Learned?

Those that practice prescribed fire in the Kansas Flint Hills respect the health and environment of their city neighbors.   Conversely, those living in neighboring metropolitan areas understand the economic importance of prescribed fire as related to beef cattle production, and the role fire plays in preserving the integrity of the tallgrass prairie.   By engaging all entities involved, agreements can be reached, solutions can be found and advancements can be made.

Prescribed fire controls woody species, maintaining the integrity of the tallgrass prairie.

Future Plans

In the years ahead,  KS Dept of Health and Environment will continue monitoring smoke emissions due to prescribed fire in the Flint Hills.  Those practicing prescribed fire will be encouraged to use the best smoke management methods of prescribed fire.   This will be done through K-State Research & Extension prescribed fire schools, the KS Prescribed Fire Council workshops and the KDHE website.

Authors

Jeff Davidson  K-State Research & Extension Watershed Specialist      Kansas State University     jdavidso@ksu.edu

Additional Information

http://ksfire.org

Acknowledgements

K-State Research & Extension, Kansas Precribed Fire Council, Kansas Livestock Association, KS Dept. of Health & Environment,  Tallgrass Legacy Alliance, KS Dept. of Wildlife, Parks & Tourism, Natural Resource Conservation Service, Farm Bureau, Cities of Wichita and Kansas City.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Litter Generated Ammonia Captured by Activated Carbon Derived ffrom Broiler Litter

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

In 2011, the production rate of broilers was 8.6 billion with a value of $23.2 billion (USDA 2012).  Both CERCLA and EPCRA have reporting requirements for ammonia (NH3) of 100 lb of NH3/d or 18.3 tons/yr, a level that may affect large animal production facilities (NRC 2003). Although USEPA (2009) has provided an exemption for animal waste producing farms under CERCLA for reporting hazardous air emissions, it is expected that this exemption will be revoked once valid methodologies are established for monitoring. Two of the 24 sites in the NAEMS monitoring study reported similar NH3 emissions of 3.6 – 5.3 tons of NH3 per house per year (Burns et al. 2009, Heber 2010). Emissions of this level indicate a need for developing technologies that can reduce the NH3 levels produced by broiler operations. This research is focused on the use of broiler litter as activated carbon (BAC) to reduce aerial NH3 generated by litter, an opportunity to not only reuse the manure, but also treat the emissions from or within broiler houses. The objective of this study was to evaluate the efficacy of BAC to remove NH3 volatilized from litter samples in a laboratory acid-trap system. Preliminary studies using NH3/air mixture indicated that the BAC capacity to adsorb NH3 was approximately double that of Vapure 612, a commercial carbon. In the litter emission study, the BAC and Vapure performance was comparable. Breakthrough for both carbons occurred within 14 hours of the test start. At the end of the 3 day test, the NH3 emission for BAC was 75% of the litter only control, whereas, the Vapure emission was 64% of the control. The results of the study demonstrate the potential for a cyclical waste utilization strategy in using broiler litter activated carbon to capture NH3 volatilized from litter.

Why Study Ammonia and Poultry Litter?

Overall purpose of this study is to develop innovative solutions for animal waste reuse and minimize emissions from poultry operations. The specific objective of this phase of the study was to evaluate the efficacy of activated carbon from broiler litter (BAC) to remove NH3 volatilized from litter samples in a laboratory acid-trap system.

What Did We Do?

The broiler litter for producing the BAC was obtained from a commercial farm in Mississippi, where the original bedding was pine shavings.  The broiler litter as collected had a moisture content of 25 to 30%.  The commercial carbon, Vapure 612 carbon (Norit Americas, Marshall, Texas), is a steam activated coal-based carbon manufactured for use in the removal of odors, toxic vapors, irritants, and corrosive gases.  After completing initial adsorption tests with the two carbons using the NH3 and air mixture, litter samples were collected from a commercial Mississippi farm where the bedding origin was also pine shavings to perform the litter emission test.  Eleven flocks had previously been grown on the litter.  The pH and moisture content were 8.32 and 17.9% respectively. The litter samples were placed in the acid trap system described below to determine the capture capacity of the carbons for NH3 volatilized from the litter. 

Litter emissions and carbon efficacy were evaluated using 50 g fresh litter samples in the laboratory using a chamber acid trap (CAT) system. The CAT system provides a straightforward method for determining differences in NH3 evolution by capturing off-gases in H3BO3. Twelve air-tight chambers, 1000 ml each, receive humidified air from a single manifold.  Weighed litter samples were placed in each air tight chamber.  To assess litter NH3 generation, exhaust air from each chamber flowed through a series of two H3BO3 flasks at approximately 115 ml/min.  The solution from the two flasks was combined into a single sample and titrated with HCl as above.  The NH3 trapped in solution was reported as mg N recovered.  For estimating carbon column efficiency, the columns described above were loaded with BAC and Vapure carbons and placed in the exhaust flow between the chambers and acid traps.  The litter only, BAC and Vapure columns were randomly assigned to the chambers in the CAT system and each replicated three times.  All treatments were titrated each morning and afternoon at consistent times for the three day test period. 

 

Chamber acid-trap system for capturing NH3 in the laboratory:  a) litter in chamber, b) activated carbon column, and c) boric acid traps. 

What Have We Learned?

Preliminary studies using NH3/air mixture indicated that the BAC capacity to adsorb NH3 was approximately double that of Vapure 612, a commercial carbon. In the litter emission study, the BAC and Vapure performance was comparable. Breakthrough for both carbons occurred within 14 hours of the test start. At the end of the 3 day test, the NH3 emission for BAC was 75% of the litter only control, whereas, the Vapure emission was 64% of the control. The results of the study demonstrate the potential for a cyclical waste utilization strategy in using broiler litter activated carbon to capture NH3 volatilized from litter. 

Future Plans

The development of these activated carbons and char from broiler litter will provide an effective means of reuse that will not only reduce waste volume, but in turn comprehensively treat the emissions from the waste during bird production, storage, and land application of litter. We will conduct greenhouse gas adsorption studies to determine the efficacy of activated carbon and char to adsorb CO2, CH4, and N2O.

Additionally, our plan is to develop an outreach program to be presented to poultry farmers in the Southeast U.S. along with other stakeholders addressing poultry farm emission regulations and technologies for remediation through workshops, a webinar and professional conferences.

Authors

Kari Fitzmorris Brisolara, ScD, Associate Professor of Environmental and Occupational Health, Louisiana State University, Health Sciences Center, School of Public Health, 2020 Gravier Street, New Orleans, Louisiana kbriso@lsuhsc.edu

Dana M. Miles, PhD, USDA-ARS-Mississippi State, Genetics & Precision Agriculture Research Unit, P. O. Box 5367, Mississippi State, Mississippi, 39762 dana.miles@ars.usda.gov

Isabel M. Lima, PhD, USDA-ARS-SRRC, P.O. Box 19687, New Orleans, Louisiana 70179 isabel.lima@ars.usda.gov

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Fate of Barbiturates and Non-steroidal Anti-inflammatory Drugs During Carcass Composting

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Are We Concerned About Drug Residues in Animal Mortality Compost?

With disease issues, the decline of the rendering industry, a ban on use of downer cows for food, and rules to halt horse slaughter, environmentally safe and sound practices for disposal of horses and other livestock mortalities are limited. Improper disposal of carcasses containing veterinary drugs has resulted in the death of domestic animals and wildlife. Composting of carcasses has been performed successfully to reduce pathogens, nutrient release, and biosecurity risks. However, there is concern that drugs used in the livestock industry, as feed additives and veterinary therapies do not degrade readily and will persist in compost or leachate, threatening environmental exposure to wildlife, domestic animals and humans.

Two classes of drugs commonly used in the livestock and horse industries include barbiturates for euthanasia and non-steroidal anti-inflammatory drugs (NSAID) for relief of pain and inflammation. Sodium pentobarbital (a barbiturate) and phenylbutazone (an NSAID) concentrations in liver, compost, effluent and leachate were analyzed in two separate horse carcass compost piles in two separate years. Horse liver samples were also buried in 3 feet of loose soil in the first year and drug concentrations were assessed over time.

What did we do?

Year 1- On 9/22/09 a 6 x 6 m piece of 10 mil plastic sheeting was laid on bare soil with a 2% slope, at the edge of Cornell University’s compost site in Ithaca, NY. Water was poured on the plastic to check the direction of flow. A hole was dug at the low end of the pad, under the plastic, large enough to fit a 76 l galvanized garbage can. A stainless steel canner was placed in the garbage can to collect effluent. A hole was cut in the plastic over the canner for collection. A 0.6 m high base (3.7 x 3.7 m) of coarse carbon material (woodchips) was laid on the plastic. A 27 year old Appaloosa mare, weighing approximately 455 kg that had been dosed with 1 gram phenylbutazone at midnight on 9/22/09 and again at 8:00 am was led onto the base and euthanized for severe lameness by a qualified veterinarian with 120 ml Fatal Plus® solution (active ingredient 390 mg/ml Pentobarbital Sodium). After the horse had been euthanized and the veterinarian ensured there were no signs of life, the carcass was maneuvered onto the wood chips with the head on the upward slope of the pad. The liver was removed from the horse and cut into 48 pieces, each weighing approximately 100 grams, and nylon mesh bags were then placed in whiffle balls. A 2 m length of nylon twine was attached to each ball. Twenty-three balls were inserted in the horse’s gut cavity and 22 balls were placed in a 1 m hole in the ground (burial hole) which was dug approximately 1.5 m from the pad. Pieces of the intestine and some blood were also placed in the hole to help mimic the presence of a carcass. The remaining 3 nylon mesh bags with liver were packaged for delivery to Cornell University’s Animal Health Diagnostic Center (AHDC) to determine initial NSAID and barbiturates concentrations. Two Hobo U12 data loggers with 4 temperature probes each were set up to record hourly temperatures. Five of the probes were placed in the compost pile: under the horse’s chest, in the horse’s hind gut, in the horse’s chest cavity, under the horse’s spine and under the horse’s right hind quarter. Two of the probes were placed in the burial hole and one probe was left out to record ambient temperature. The hole was covered with loose soil. The horse was covered with woodchips so that the pile was approximately 1.8 m high. The plastic liner was tightened by rolling it over and under wooden fence posts.

Year 2- In year 1, the collection of “leachate” included precipitation that diluted the leachate. In year 2, to target only the liquids that leached out of the horse and through the pile, two 3 m long troughs with a 1% slope were built out of 15 and 10 cm diameter PVC pipe attached to 5 x 15 cm untreated lumber. The troughs were placed on the pad from the centerline to the edge of the pile end-to-end with slopes going toward the outside of the pile. Leachate drained via gravity into 2-liter polyethylene bottles attached to the troughs. The exposed ends of the troughs were covered with 1 m length of aluminum flashing to keep rainwater out of the collection bottles.

On 8/10/10 the leachate collection troughs were laid on bare soil with a 2% slope at the edge of Cornell University’s compost site in Ithaca, NY. A 0.6 m high base (3.7 x 3.7 m) of coarse carbon material (woodchips) was laid on top of the troughs. A 22 year old horse weighing approximately 590 kg, that had been dosed with 1 gram phenylbutazone at midnight on 08/10/10 and again at 7:30 am, was led onto the base and euthanized by a qualified veterinarian with 300 mg xylazine as a sedative, then with 120 ml Fatal Plus® solution (active ingredient 390 mg/ml Pentobarbital Sodium). After the horse had been euthanized and the veterinarian ensured there were no signs of life, the carcass was maneuvered on the wood chips with the head on the upward slope of the pad. The veterinarian took 4 tubes of blood from a vein in the nose and a vein in the front leg of the horse in heparinized Vacutainer® tubes for initial concentrations of pentobarbital and phenylbutazone. Twenty-six whiffle balls that had been pre-filled with wood chips (the base material of the compost pile) were placed such that they would be under the horse and liquids coming from the horse would be absorbed by the chips inside the balls, as well as in the surrounding base material, while the excess would drain down the leachate collection troughs and be captured in the 2 liter bottles at the end of the troughs (Figure 1). One Hobo U12 data logger with 4 temperature probes was set up to record hourly temperatures. The probes were placed under the horse’s neck and rump, on top of the horse’s abdomen, and one was left out to record ambient temperature. The horse was covered with woodchips so that the pile was approximately 1.8 m high. Additional woodchips were added to the pile on August 13 and the pile was covered with a breathable polyester compost cover to collect only what was leaching from the animal.

Figure 1 Cross-section of horse compost pile showing placement of leachate collection troughs and woodchip-filled whiffle balls.

On 8/10/10 a 0.6 m high base (3.5 x 3.5 m) of coarse carbon material was laid near the horse compost pile. A 455 kg 3 year, 7 month old, 2nd lactation Holstein cow was euthanized, due to a lung abscess, in the same manner as the horse (300 mg xylazine, followed by 120 ml Fatal Plus®). Four tubes of blood were withdrawn from her milk vein as described for the horse. One Hobo U12 data logger with 4 temperature probes was set up to record hourly temperatures. The probes were placed under the cow’s udder and rear leg, on top of the cow’s back, and one was left out to record ambient temperature. The cow was then covered with woodchips so that the pile was approximately 1.8 m high. Additional woodchips were added to the pile the following day before the pile was covered with a compost cover.

What did we learn?

In year one, phenylbutazone concentrations in the liver of the horse were undetectable (< 10 ppb) by 20 days of composting or burial in loose soil and were undetectable in effluent from the pile at the time of first sampling on day 6. Pentobarbital concentrations were undetectable (< 10 ppb) in liver samples retrieved from both the compost pile and loose soil by day 83. Rate of decay was faster in the soil, exponentially decreasing by 18% per day, with a half-life of 3 days, than in the compost pile where there was a 2% decrease per day and a half-life of 31 days, but occurred at the same rate of 1% and a half-life between 55 and 67 mesophilic degree days when calculated on the number of mesophilic degree days to which it was exposed. This suggests that breakdown of pentobarbital is not initiated by the heat of composting, but by the biological degradation that occurs in both soil and compost at mesophilic temperatures. Pentobarbital in the effluent decreased by 20% per day with a half-life of 3.1 days but was still detectable (0.1 ppm) at 223 days of composting.

In year 2, phenylbutazone was not detected in any of the samples analyzed (compost and leachate) other than blood taken from the jugular vein of the horse immediately after euthanasia. Pentobarbital concentrations in the compost were still detectable after 224 days of composting, but had decreased from 79.2 (initial) to 5.8 ppm. Pentobarbital in leachate was 2.2 ppm at day 56 of composting, after which no additional fluids leached into the leachate collection containers.  Rate of decay in the leachate was 35.2% per day with a half-life of 1.6 days. When managed properly, composting will deter domestic and wild animals from scavenging on treated carcasses while they contain the highest drug concentrations providing an effective means of disposal of euthanized and/or NSAID treated livestock. The resulting compost contains either no or very low concentrations of both NSAIDs and barbiturates rendering it safe for use in agriculture.

Barbiturate poisoning in domestic and wild animals has occurred from ingestion of tissue from animals euthanized with pentobarbital. Many of the reported cases have occurred from direct feeding on improperly disposed livestock in which little or no degradation or biotransformation of pentobarbital has occurred.  During the time period in which carcasses would be desirable to domestic and wild animals as a food source, composting creates sufficient heat to deter them from digging in to the pile. In addition, when covered properly, the smell of decomposition is minimized, also reducing attraction. The diverse community of microorganisms in the compost pile aids in the degradation and biotransformation of pentobarbital, especially after the thermophilic phase of composting is over. Properly implemented composting, as a means of disposal of euthanized or NSAID treated livestock, will deter domestic and wild animals from scavenging for carcasses when they contain the highest drug concentrations. The resulting compost contains either no or very low concentrations of either NSAIDs or barbiturates, rendering the compost safe for use in agriculture.

Future Plans

Education and implementation work continues in this area nationally and internationally. A 5th International Symposium on Depopulation and Disposal of Livestock is in the planning stages. A study on the Fate of anthelmintics (drugs that expel parasitic worms from the body) in livestock manure has just been completed.

Authors

Jean Bonhotal,  Mary Schwarz,  Cornell University, Cornell Waste Management Institute, Ithaca, NY

Karyn Bischoff, Joseph G Ebel, Jr. Cornell University, College of Veterinary Medicine, Ithaca, NY

Additional Information

Visit Cornell Waste Management Institute Web site: http://cwmi.css.cornell.edu/mortality.htm

Trends in Animal & Veterinary Sciences Journal article http://cwmi.css.cornell.edu/fate.pdf

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

What Practices Increase Infiltration and Reduce Runoff on Slopes Greater Than 30%?

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Are We Concerned About Runoff on Farms?

Farming in the driftless region of Wisconsin where the steep fields and waterways are all connected to rivers and streams can have signficant risks to water quality.  Sediment and nutrient movement into streams, rivers, and lakes in this part of the state has always been an issue, and agriculture has been identified as the largest contributor.  This talk is given by a farmer living and farming in one of the most challenging areas of the country.

What Did We Do?

Home dairy farm

For seven years, the UW – Discovery Farm Program (DFP) and the United States Geological Survey (USGS) conducted a paired research project on a livestock operation in the driftless region of Wisconsin.  This farm consisted of about 800 acres of tillable acres where fields are steep (some >30% slope), and every one drains into a waterway or stream which eventually flows into the Mississippi River.

What Have We Learned?

The USGS installed two in-stream monitoring stations in two small headwater streams that divide the farm.  The north basin consists of 430 acres with 150 acres cropland, 250 acres woodland, and 30 acres pasture.  The south basin consists of 215 acres with 39 acres cropland and pasture, 107 acres woodland, and 69 acres in CRP/CREP.  The farming system uses a combination of conservation tools and techniques that have been adapted to fit the physical setting of the area, and the goals and vision of the producer who has a rich history of conservation. Harvesting precipitation is constantly at the forefront of operations through careful soil management, a network of small check dams and larger at-grade stabilization structures, and a focus on minimizing soil disturbance activities. Seven years of data indicated that almost all sediment losses occurred during a few large summer storms that exceed the design criteria.

Overlooking the dairy farm

Future Plans

This project is completed and all that remains is the development of outreach and education materials.

Authors

Joe Bragger, Dairy Farm Manager, Bragger Family Dairy,  braggfam@triwest.net

Dennis R Frame, Director, UW – Discovery Farms

Amber Radatz, Outreach Specialist, UW – Discovery Farms

Eric Cooley, Outreach Specialist, UW – Discovery Farms

Dam on the farm

Additional Information

Information is available through the website (http://www.uwdiscoveryfarms.org) or by contacting the office at 1-715-983-5668.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Soil Amendments Reduced Herbicides Mobility into Agricultural Runoff

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Recycling waste such as municipal sewage sludge (SS) and yard waste (YW) for use as low-cost fertilizer resulted in positive effects on the growth and yield of vegetable crops. Eighteen runoff plots were established at Kentucky State University research farm (Franklin County, KY) to study the impact of soil amendments on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from agricultural fields. Three soil management practices: municipal sewage sludge (SS), SS mixed with YW, and no-mulch rototilled bare soil were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Biobeds (a soil cavity filled with a mixture of wheat straw, peat moss, and top soil) reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminate natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. We concluded that soil amendments could be used to intercept pesticide-contaminated runoff from agricultural fields, creating optimum conditions for sorption and biodegradation such that the amount of pesticides adjacent to water bodies is significantly reduced. This practice might provide a potential solution to pesticide contamination of surface and seepage water from farmlands.

What Did We Do?

Eighteen runoff plots were established at Kentucky State University research farm to study the impact of soil amendments on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from agricultural fields.The field trial area was established on a Lowell silty loam soil (pH 6.7, 2% organic matter) of 10% slope located at the Kentucky State University (KSU) Research Farm (Franklin County, KY). The farm is located in the Kentucky River Watershed in the Blue Grass Region. Eighteen (18) field plots of 3.7 m wide and 22 m long each were installed with stainless steel borders along each side to prevent cross contamination between adjacent treatments. A gutter was installed across the lower end of each plot with 5% slope to direct runoff to the tipping buckets and collection bottles for runoff water measurement. At the bottom of each plot, a pan lysimeter (n=18) of 1.5 m deep was installed for collecting infiltration water following natural rainfall events.

At the lower end of each of nine experimental plots, nine biobed systems were installed (Figure 1.). Three soil management practices were used in experimental plots: 1) municipal sewage sludge obtained from Metropolitan Sewer District, Louisville, KY was mixed with yard waste compost (obtained from Con Robinson Company, Lexington, KY) and incorporated into native soil at 15 t acre-1 (on dry weight basis) with a plowing depth of 15 cm, 2) municipal sewage sludge  was mixed with native soil at 15 t acre-1 (on dry weight basis) with a plowing depth of 15 cm, and 3) a no-mulch (NM) control treatment (roto-tilled bare soil) was used for comparison purposes. The soil in the experimental area was sprayed with a mixture of dimethazone (Command 3ME) and trifluralin (Treflan) formulations at the recommended rates of application in Kentucky. [1] Seedlings of muskmelon (Cucumis melo cv. Athena) and bell pepper (Capsicum annuum cv. Artistotle) were planted with 25 and 60 cm in-row spacing, respectively. Runoff water under three natural rainfall events was collected and quantified at the lower end of each plot throughout the growing season using tipping-bucket runoff metering apparatus. Pan lysimeters were used to monitor the presence or absence of pesticide residues in the vadose zone, the unsaturated water layer below the plant root. Trifluralin and dimethazone were extracted with 150 mL of a mixture of methylene chloride [CH2Cl2] + acetone (6:1, v/v) using liquid-liquid partition. Concentrated extracts were injected into a gas chromatograph (GC) equipped with flame ionization detector (FID). The gas chromatograph (HP 5890, Hewlett Packard) was equipped with a 30-m (0.23-mm diameter, 0.33-µm film thickness) fused silica capillary column with HP-5 (5% phenyl polysiloxane, 95% methyl polysiloxane) liquid phase. Operating conditions were 230, 250, and 280 °C for injector, oven, and detector, respectively. Under these conditions retention times (Rt) of trifluralin and dimethazone averaged 16.29 and 17.43 min, respectively (Figure 2).

Figure 1. Schematic diagram of a slot-mulch biobed system. Note that a pan lysimeter is installed at the bottom of each biobed system to collect infiltration water and monitor herbicide mobility.

Figure 2. Gas chromatographic (GC) chromatograms of native soil extracts prepared in acetonitrile: hexane: methanol (45:45:10 v/v) at 1 h (upper graph) and 3 d (lower graph) following spraying with a mixture of Clomazone and Treflan formulations at the recommended rate of application

What Have We Learned?

Herbicide residues detected in soil and water (Figures 3 & 4) were confirmed using gas chromatography (GC)/mass spectrometry (GC/MS) (Hewlett Packard Model 5971a). The increased organic matter content of soil due to the addition of soil amendments (SS and SS mixed with YW compost) increased the concentration of dimethazone and trifluralin retained in soil. Dimethazone residues extracted from SS and SS+YW compost increased by 14 and 50%, respectively compared to no-mulch soil. Similarly, trifluralin residues increased by 17 and 75% in SS and SS mixed with yard waste, respectively, compared to no-mulch native soil. This could be explained by the adsorption properties of dimethazone on soil particles [2] that varied with increasing percentages of organic matter following the addition of amendments as well as the partial degradation of dimethazone by soil microbes. [3] Loux et al. [2] proposed hydrophobic bonding to organic matter to be the primary mechanism of dimethazone sorption and that bioavailability and dissipation of dimethazone in soil are determined by dimethazone adsorption properties. Yard waste compost contains significant concentrations of humic acid, the main constituent of soil organic matter. Functional groups in humic acid, namely carboxylic and phenolic groups appeared to be the principle sites for the adsorption and interaction with trifluralin. [4]

Table 1. indicated that the soil binding property (Koc) of dimethazone is 150-562 mL g-1 while Koc of trifluralin is 8,000 mL g-1. Greater Koc values of trifluralin indicated a tighter binding to the soil particles. Plots amended with SS+YW mix increased volume of water percolated into the vadose zone by 55% compared to no-mulch treatments. Plots with biofilters also increased the volume of water percolated into the vadose zone. This increase was greatest (44%) in SS+YW treatments.  This increase could be attributed to the reduced bulk density and increased soil particle interspaces after addition of yard waste compost. As indicated previously, water solubility, vapor pressure, and Koc value of a pesticide have a great impact on its mobility and distribution in the environment. Dimethazone residues in infiltration water were reduced from 0.5 to 0.31 mg plot-1 (38 % reduction), while trifluralin residues were reduced from 17.7 to 7.3 mg plot-1 (60 % reduction). This is attributed to the presence of biobeds (biofilters) as well as the physical and chemical characteristics of each of the two herbicides that vary from the high water solubility and low Koc values of dimethazone to the low water solubility and high Koc values of trifluralin (Table 1).

Figure 3. Dimethazone residues in runoff water (upper graph) and trifluralin residues in runoff water (lower graph) collected down the land slope under three soil management practices. Each plot is 3.7 m x 22 m long (0.02 acre). Statistical comparisons were done between plots with biofilters and plots with no biofilters.

Figure 4. Dimethazone residues in infiltration water (upper graph) and trifluralin residues in infiltration water (lower graph) collected under three soil management practices. Statistical comparisons were done between plots with biofilters and plots with no biofilters.

Future Plans

Future objectives will be to test the performance of biobed systems in reducing trace-elements mobility from soil amendments into runoff and seepage water.

Authors

George F. Antonious, Professor, Kentucky State University –College of Agriculture, Food Science, and Sustainable Systems- Division of Environmental Studies and Sustainable Systems, Frankfort, KY 40601, USA george.antonious@kysu.edu

Eric T. Turley, Co-Investigator, Kentucky State University-College of Agriculture, Food Science, and Sustainable Systems- Division of Environmental Studies and Sustainable Systems, Frankfort, KY 40601, USA

Regina R. Hill, Research Assistant, Kentucky State University-College of Agriculture, Food Science, and Sustainable Systems- Division of Environmental Studies and Sustainable Systems , Frankfort, KY 40601, USA

Additional Information

https://kysu.edu/academics/cafsss/agriculture-research/division-of-environmental-studies-and-sustainable-systems/

Acknowledgements

The authors acknowledges Darrell Slone and Janet Pfeiffer for their kind assistance in planting pepper and melon at KSU research farm. This investigation was supported by two grants from USDA/CSREES to Kentucky State University under agreements No.KYX-10-08-43P & No.KYX-2006-1587.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Nutrient Planning on Swine Farms

Introduction


LESSONS LEARNED – See links below for more detail.
Mouse over the bottom of the slide to slow or pause slides.

Thirteen swine producers from Corn Belt states participated in a project with faculty from University of Nebraska and Purdue University to understand the movement of nutrients (nitrogen and phohsphorus) on commercial swine facilities. These farms ranged in size from 2,000 to 16,000 head finishing capacity with most farms being wean to finish or feeder pig to finish operations. The project team developed a whole farm nutrient balance for each farm for both 2006 and 2007 based upon farm specific data.

Primary project outcomes include an understanding of the primary sources of nutrients arriving on these farms, the magnitude of imbalances experience by these farms, and the value of specific nutrient management practices to minimizing the nutrient imbalances experienced by swine production.

To learn more about the concept of Whole Farm Nutrient Balance (WFNB), the lessons learned from this on-farm research, and the tools developed for use by producers, the following introduction is suggested:

WFNB for Pork Production – An Introduction

Lessons Learned

Tools

Archived Workshop on WFNB

  • Introduction to WFNB
  • Lessons Learned from 13 Commercial Swine Facilities
  • Introduction to WFNB Tools

Authors:

This project was funded by The National Pork Board. The authors wish to extend their appreciation for the financial support provided for completing this on-farm research project.

Snap-Shot Assessments of Nutrient Use on Dairy Farms

Nutrient Use Efficiency

Escalations in feed and fertilizer cost, and ebbing milk prices are motivating many dairy farmers to find new ways to improve nutrient use efficiency (NUE) on their farms. But how can NUE be determined and monitored easily on dairy farms, and what improvement in NUE can be realistically expected? Over the past several years researchers at the U.S. Dairy Forage Research Center and the University of Wisconsin-Madison have been developing and using rapid assessment methods to provide snap-shot assessments of feed, fertilizer, and manure use on dairy farms in various settings. The most recent work was a survey of 54 Wisconsin dairy farms known as On Farmers’ Ground.

Snap-Shot Assessments of Nutrient Use on Dairy Farms Webcast

This webcast describes and demonstrates the usefulness of using rapid assessment methods to provide snap-shot assessments of feed, fertilizer, and manure use on dairy farms in various settings.

Resources Available Through “On Farmers’ Ground”

  • Fact Sheet which outlines the procedures used to provide ‘snap-shot’ assessments of feed, fertilizer and manure use. Some examples are provided of the information obtained using snap-shot assessment techniques.
  • Survey Questionnaire designed to compile information on herd size and composition, livestock facilities, land use, management practices, and motivations and goals related to feed, fertilizer and manure management.
  • Manure Tracking Book used to systematically tract how, when and where farmers spread manure, and factors that influenced farmer decisions related to manure management.
  • Final Farmer Report which contains analytical results of feed and manure samples taken during the farm visits, including information on how farmers may use these results to improve feed and manure management. The Final Farmer Report also contains estimates of manure collection, as well as a series of farm maps depicting crop rotations, manure spreading practices, nitrogen and phosphorus applications as fertilizer, manure and legume-fixed N, and farm cropland areas that are impacted by USDA-NRCS 590 Nutrient Management Standards.
  • Four scientific journal articles related to the On Farmers’ Ground project

Author

J. Mark Powell
Soil Scientist-Agroecology, USDA-ARS US Dairy Forage Research Center
Professor of Soil Science, University of Wisconsin-Madison
1925 Linden Drive West
Madison, WI 53706
<mark.powell@ars.usda.gov>

Air Emission and Energy Usage Impacts of No Pit Fans in a Wean to Finish Deep Pit Pig Facility

What Is Being Measured?

The objectives of this research project are to monitor the indoor air quality of a deep-pit; wean-to-finish pig building over one pig-growth cycle (six months) by semi-continuously measuring concentrations of ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), methane (CH4), and volatile organic compounds (VOCs) and intermittently measuring particulate matter (PM10) and odor. The project will also monitor semi-continuous emissions of NH3, H2S, CO2, CH4, and VOCs plus intermittent sampling of odor emissions from the barn’s pit and wall exhaust streams over the six month growth period. Energy usage, both electrical and LP gas usage will be measured for both pit and non-pit ventilated rooms over the pig growth, along with pig performance (daily gain, feed efficiency, and death loss) between the rooms.

Current Activities

A cooperating pork producer is being located in southern Minnesota with a tentative starting date of July 1, 2008 for data collection.

Does the Use of Pit Fans Make a Difference in Air Emissions from Deep-Pit Pig Barns?

Air emissions from tunnel ventilated pig finishing barns have been monitored and partitioned between pit and wall fans during the past two years in Minnesota. The results showed that a disproportionate amount of hydrogen sulfide (H2S) and ammonia (NH3) emissions were emitted from the deep pit finishing barn through pit fans even though it was concluded that “pit” ventilation has little effect on the barn’s indoor air quality (figure 1). Thus producers might be able to reduce emissions of these hazardous gases and the associated odor of these gases simply by limiting or not using pit ventilation fans. Such a strategy would save electrical energy use since larger more efficient wall fans could replace the less efficient pit fans.

Figure 1. Hydrogen Sulfide Emissions from a 1200 head pig finishing barn with varying pit ventilation rates during a winter (January 26 to March 4, 2006) period. Contributed to eXtension CC2.5

Why is This Important?

Data collected from the deep pit facility will be used to determine the benefit of pit fans to indoor air quality in swine wean to finish buildings and what impact the use of pit fans has on energy usage and gas, odor, and particulate matter emissions from this stage of pork production buildings .

For More Information

Jacobson, L.D., B.P. Hetchler, and D.R. Schmidt. 2007. Sampling pit and wall emission for H2S, NH3, CO2, PM, & odor from deep-pit pig finishing facilities. Presented at the International Symposium on Air Quality and Waste Management for Agriculture. Sept 15-19, 2007. Broomfield, CO. St. Joseph, Mich.: ASABE

Authors: Larry D. Jacobson, David Schmidt and Brian Hetchler, University of Minnesota

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Market Based Conservation

Market-based conservation is an evolving concept that can mean different things to different people. Market-oriented approaches to conservation can include:

  • Using economic approaches, such as auctions and trading of credits, niche marketing, and a variety of payment for ecosystem services strategies
  • Encouraging competitions, such as bidding for grants or offers to pay for a greater share of the cost
  • Providing data to inform the conservation investment decisions of others
  • Focusing on monetary and non-monetary incentives
  • Fostering knowledge-based conservation

Webcast Presentation

The LPE Learning Center hosted a webcast on Market Based Conservation: Implications for Manure Management in May, 2008.

Market Based Conservation as a Policy

At the White House Conference on Cooperative Conservation in 2005, Agriculture Secretary Johanns announced a new U.S. Department of Agriculture Policy on Market-Based Environmental Stewardship. The goal of this policy is to broaden the use of markets for environmental and ecosystem services through voluntary market mechanisms. These mechanisms may include environmental credit trading, insurance, mitigation banking, competitive offer-based auctioning, eco-labeling—and more. The intent of this new policy is to make a deliberate, determined effort to help bring producers and consumers together and to develop innovative tools to quantify environmental impacts. In December of 2008, the USDA announced the creation of the Office of Environmental Markets to catalyze the development of markets for ecosystem services.

Until the last few years, in the U.S., most of the incentives for conservation have been provided by government through sharing the cost of conservation practices on private lands because these practices also have public environmental benefits. Trading is a market approach that is gaining acceptance through the cap and trade system. The Environmental Protection Agency policy on water quality trading is an example of the market approach. With trading, regulated industries have the flexibility to find the least cost avenue to comply with emissions, or at times, to trade with others to improve environmental quality. That is, when regulated industries must reduce emissions it may be cheaper to pay other firms or farms to reduce emissions than to do it themselves. Trading has the potential to accelerate air and water quality improvement and reduce compliance costs. The key to market-based incentives is that they are voluntary, verifiable, and transparent.

Examples of Market Based Conservation or Trading Programs

The New York City Watershed Agricultural Program is a great example of market based trading with a complementary municipal and agricultural partnership. Local farmers and agribusiness worked with the city to protect drinking water quality on nearly 500,000 acres of farmland in the watershed that supplies New York with drinking water. This saved the city millions of dollars in the development of advanced treatment systems and helped the rural community maintain its character.

One of the best manure based examples that is currently available is the Environmental Credit Corporation Lagoon Cover Program. Through this program, they will design, finance, and install lagoon covers to capture methane and other emissions at no cost to the farmer. They use the results to sell the carbon credits and can provide additional income to producers in some cases. Companies that buy and sell credits like ECC are called aggregators of credits. While national carbon legislation in the US has still not passed, there are still voluntary opportunities that exist for those in the agricultural sector as outlined in this webcast on opportunities for pork producers.

A final example is Vermont’s Cow Power program. Central Vermont Public Service, a utility, created a surcharge/premium people can pay to purchase green power generated by anaerobic digesters on dairy farms. This premium goes back to the farmer, generating a marketplace incentive and reward for farmers who are generating renewable, green energy from manure.

Recommended Reading on Market Based Conservation

EPA has just issued a new publication as part of its effort to support innovative, market-based approaches to water quality trading. The Water Quality Trading Toolkit for Permit Writers: Interim Technical Guide provides National Pollutant Discharge Elimination System (NPDES) provides permitting authorities with the tools they need to incorporate trading provisions into permits. The Toolkit also serves as EPA’s first “how-to” manual on designing and implementing trading programs consistent with EPA’s 2003 National Water Quality Trading Policy and will be valuable to all stakeholders. The Toolkit is focused on trading nitrogen and phosphorus, although, based on the Trading Policy, other pollutants may be considered for trading on a case-by-case basis.

The USDA Economic Research Service published a publication on Environmental Credit Trading; Can Farming Benefit. This six page document outlines several opportunities and discusses the potential markets for agricultural credit providers. They also published a document called The Use of Markets to Increase Private Investment in Environmental Stewardship that provides an overview of some market based conservation options.

American Farmland Trust’s Center for Agriculture in the Environment helps protect America’s agricultural lands and promotes healthy farming practices. This public policy research center has some excellent materials on market based conservation such as insurance programs to pay for yield reductions do to reduced nutrient inputs and materials on ecosystem services provided by agriculture.

The Ecosystem Marketplace Website provides many links to great resources and is a good example of an established trading program.

Harnessing Farms and Forests in the Low-Carbon Economy: How to Create and Verify Greenhouse Gas Offsets, a technical guide for farmers, foresters, traders and investors. A preview of the guide is available online at the Duke University Nicholas Institute for Environmental Policy Studies

Research Summaries on Market Based Conservation

An economic analysis of nutrient trading in the Chesapeake Bay Region: A study looks into nutrient credit trading as a means to improve the quality of water in the Chesapeake Bay.

Water Quality Trading in the United States provides a great overview of water quality trading programs implemented in the U.S. The primary source of information for this overview is a detailed database, collected and compiled by a team of researchers at Dartmouth College.

Paying For Environmental Performance: Using Reverse Auctions To Allocate Funding For Conservation Since demand for funding in conservation programs usually exceeds the available funds, allocating funding in a way that achieves the greatest environmental outcomes is essential. Reverse auctions are one way to efficiently allocate funding. This paper examines two reverse auctions conducted in Pennsylvania, designed to fund best management practices that reduced phosphorus pollution. It explains how reverse auctions can be used to maximize environmentally desirable outcomes, and outlines lessons learned from the Conestoga Reverse Auction Project within Pennsylvania’s Susquehanna River Watershed.

The Florida Ranchlands Environmental Services Project: Field Testing a Pay-for-Environmental-Services Program This paper examines a project in Florida that will field test a program that pays cattle ranchers to provide environmental services that will benefit the lake. The program came about after a 2004 study conducted by World Wildlife Fund (WWF) with several cattle ranchers concluded that a program to promote changes in water management practices on 850,000 acres of improved and unimproved pasture could moderate water flows to the lake, reduce phosphorus loads, and add to wetlands habitat. The study concluded that the agencies could buy these environmental services from cattle ranchers at a lower cost than producing the services by building new public works projects.

Doug Parker at the University of Maryland has written a report on Creating Markets for Manure: Basin-wide Management in the Chesapeake Bay Region. This report summarizes various methods for creating manure based markets. Other reports and programs from Georgia and Arkansas have focused on improving markets for poultry litter.

Author: Mark Risse, University of Georgia
Reviewers: John Lawrence, Iowa State University and Suzy Friedman, Environmental Defense Fund

Livestock and Poultry Environmental Stewardship Curriculum

LPES Curriculum Lessons

The lessons are divided into six modules: Introduction, Dietary Strategies, Manure Storage and Treatment, Land Application and Nutrient Management, Outdoor Air Quality, and Related Issues.

Small Farm Fact Sheets

The small farm fact sheet series were developed to assist smaller-scale livestock and poultry producers with questions about regulations and environmental stewardship.

Agricultural Environmental Management Systems (EMS) Series

The Ag EMS series is based on the ISO 14001 international standard for environmental management systems (EMS). The series is targeted toward educators and producers and assists with integrating environmental considerations into a systematic approach to day-to-day farm management.