Adapting to Climate Change in the Pacific Northwest: Promoting Adaptation with Five-Minute Videos of Agricultural Water Conservation and Management Practices

Proceedings Home W2W Home w2w17 logo


In a multimedia-based world, short videos are an effective visual means to provide information. A series of short (5-minute) climate change videos focusing on water conservation and efficiency were developed to connect innovative farming practices to other farmers, their advisers, consultants and the agricultural community.

What did we do? 

Profiled stories include: water-efficient measures, featuring ‘low irrigation spray application’ (LISA) irrigation and ‘low elevation precision application’ (LEPA) irrigation in Eastern Washington; a video focused on dry-land farming of vegetables and fruit in Oregon using regionally adapted long taproot varieties from California; and a video featuring an Eastern Washington dairy farm’s reactive adaptation management after 2015, preparing for future growing seasons with less water. In each of the short videos, farmers, their advisers, and university experts are interviewed to provide their perspectives, knowledge and economic information.

What have we learned?             

These videos are shared to highlight successful practices of conserving water while remaining profitable. Each video suggests evaluating a climate compatible management practice or crop variety on a part of a field, or when replacing outdated irrigation sprinklers and pumps.

Future Plans   

Future plans include regional promotion of these successful practices.

Corresponding author, title, and affiliation        

Elizabeth Whitefield, Research Associate, Washington State University

Corresponding author email

Other authors   

Joe Harrison, Livestock Nutrient Management Extension Specialist, Washington State University

Additional information               

Please visit to view the videos and to find more information.


This effort was fully supported by Western Region Sustainable Agriculture and Research Education Program (EW15-012, Implications of Water Impacts from Climate Change: Preparing Agricultural Educators and Advisors in the Pacific Northwest)

Western Region Symposium on Animal Agriculture in a Changing Climate March 31, 2015

These presentations were from the Western Region Symposium on Animal Agriculture in a Changing Climate at the Waste to Worth Conference, Seattle WA. 3/31/2015.

Climate Change Impacts On Western Livestock

Lara Whitely-Binder is an outreach specialist with the University of WA’s Climate Impact’s Group.  Her presentation describes the Western U.S regional climate outlook and projected impacts to agriculture. She examines the impacts (some positive, some negative) on water supply, changes in yield, rangeland fire risk and forage quality, and milk and beef production.

Livestock Grazing In a Changing Climate: Implications for Adaptive Management

Justin Derner, PhD is a Rangeland scientist with the USDA-ARS in Cheyenne, WY, and the director of the Northern Plains Climate Hub in Ft. Collins, CO. This presentation discusses livestock grazing in a changing climate and the implications for adaptive management on rangelands. Adaptive management is a process by which a manager is constantly evaluating the system and making adjustments to reduce risks and uncertainty. View Dr. Derner’s proceedings paper for the conference.

USDA Northwest Region Climate Hub Update

Bea Van Horne, PhD is with the USDA Forest Service and the director of the USDA for the Pacific Northwest Regional Climate Hub. She gave an update of the Pacific Northwest Climate Hub.  Climate change is expected to have significant impacts on agriculture. The climate hubs aim to deliver region-specific information and serve as a clearinghouse for providing science-based information to agricultural managers.

Beef Cattle Selection and Management For Adaptation To Drought

Megan Rolfe, PhD is an assistant professor in animal science department at Oklahoma State University and a beef extension specialist for the state of Oklahoma. The presentation discusses her program’s research findings on beef cattle selection and management for adaptation to drought. She discusses areas such as water intake, quality and quantity of available water, and animal performance and carcass characteristics under water restriction.

Adopting Policies and Priorities to Encourage Climate-Smart Agricultural Practices

Susan Capalbo is Professor and Department Head of Applied Economics at Oregon State University. She gave an presentation discussing ways to encourage the ag community to adopt practices and policy makers to create policies that are beneficial in terms of climate and food production.


This page was developed as part of a project “Animal Agriculture and Climate Change” an extension facilitation project to increase capacity for ag professionals. It was funded by USDA-NIFA under award # 2011-67003-30206. If you have questions about any of the topics or have problems with links, contact Crystal Powers or Jill Heemstra

For questions about the AACC project, contact Rick Stowell or Crystal Powers.

Adaptation and Risk Management

Food production is dependent on weather and climate. Agriculture must always be planning and preparing for weather or responding to weather as it happens. Adaptation to weather and climate has occurred since farming started and will continue to occur as we move forward in the future. The rate of adaptation is the key to keep up with the rate that the climate changes.

Factsheet: Adapting to a changing climate: A planning guide (PDF; 44 pp)

Climate Change Adaptation is the most common terminology used to discuss how organisms and ecosystems adjust to changing extremes or patterns in weather over time. Most cities and states are drafting plans to help prepare for weather events such as flooding, extreme heat events, disease outbreaks, and others.

Risk Management is a term more commonly used in business and refers to the process of identifying, assisting, and prioritizing of risk followed by some application of resources (usually time or money) to prevent or minimize the negative consequences.

A report from Iowa Beef Center in 1995 discussed a survey of beef producers who lost cattle in a 13 county area over a 2 day period. For those farmers loosing animals, the impact was significant but a quote from the paper sums up the cost benefit decision that must be made when planning for a changing climate.

“How much can a feedlot operator spend to protect against a weather event that has occurred only six times in the last 101 years?”

This is a real and critical question that must be asked. What if this similar type of heat event started occurring every 10 years, or every 5 years? This changes the equation when looking at risk and reward or cost benefit to the implementation of practices or systems to deal with extreme heat.

Adaptation Strategies

Adaptation strategies lay on a continuum with the least drastic listed first (increasing resilience) and most drastic last (transformation).

  • Increasing resilience is a level of adaptation that is similar to what has occurred in the past. As climate changes, technologies or management improves or adjusts to those changes. Resilience has resulted in animal housing, irrigation, diet, genetics, management and other factors that allow farms to be profitable with standard weather variability.
  • Reducing vulnerability is adaptation at the next level with larger and longer term changes in an existing operation to reduce the risk of current or future climate trends. Things such as bringing in heat tolerant genetics, additional cooling capacity in the buildings, or farm diversification. These strategies require a higher investment and are focused on operational changes that allow for profitability into the future.
  • Adaptation through transformation are those changes where the current farming system is nearly abandoned due to climate changes. Complete changes are made in cropping or animals or a new business venture replaces the one on the current site. Transformation might also include the general migration of an industry to a new climate region.

cattle loafing on a bed pack in their barn

Any adaption strategy must be chosen as a function of the site specific features of the farm. Geographic location, current management, current finances, long term and short term farm goals and other considerations need to be made when evaluating farm management and business changes. In addition, the strategy must be based on the current or predicted trends in weather and the impacts this might bring to the farm. A farm prone to flooding in a region where flooding trends are increasing may be interested in a transformational adaptation strategies like relocation than a farm that never experiences flooding.

Cost benefits of these adaptation strategies are not simple. If we were only comparing damage cost to the cost to prevent the damage, the calculation would be simple. Unfortunately, the damage cost is a function of the probability of the weather event and its intensity. For now we must rely on recent weather trends and future climate predictions. Therefore, it is important to be informed about climate change, the impacts of climate change on a local and global level and the economics of adaptation options. Site assessment and planning are key to making good long term adaptation decisions.

Educator Materials

If you would like a copy of the original slides or downloadable copy of the video, please fill out this form. If you use these materials for educational purposes, please send an email to with how you used the video and how many people watched, to help us improve our resources and document our impact.

Recommended Reading/Viewing

Agricultural Adaptation to Climate Change: Economic and Environmental Implications Vary by Region More… (USDA Economic Research Service, 2012)

Dairy Cattle – Heat Stress

Beef Feedlot Cattle – Heat Stress

Rangeland/Pasture – Drought

Swine Heat Stress

Poultry Heat Stress

Drought: Water Quality and Quantity

Disaster Preparedness Resources


Author: David Schmidt, University of Minnesota

This material was developed through support from the USDA National Institute for Food and Agriculture (NIFA) under award #2011-67003-30206.

Staying Ahead of the Curve: How Farmers and Industry Are Responding to the Issue of Climate Change

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Is This Topic Important?

Several farmers, ranchers, and industry groups are leading the way on the issue of climate change. 

What Will Be Learned In This Presentation?

These panelists will share how their farm or industry is responding to climate change, what factors are driving their decision to make changes, and the impact of climate change on long-term planning. This moderated session will encourage audience questions and facilitate exchange of ideas on how the agriculture industry can meet this challenge.


David Smith, Southwest Region Coordinator Animal Agriculture and Climate Change Project, Texas A&M University and Liz Whitefield, Western Region Coordinator, Washington State University

  • Jamie Burr –  Tyson Foods, Chair National Pork Board Environment Committee
  • Abe Collins – cattle grazier, Cimarron Farm, Regenerative Farmscaping consultant, Board Member Soil Carbon Coalition
  • Paul Helgeson – Sustainability Director with Gold’n Plump Chicken
  • Bryan Weech, Director Livestock & MTI Commodity Lead, World Wildlife Fund
  • Andy Werkoven – dairyman and anaerobic digester co-owner, Werkhoven Dairy Inc., 2012 winner of US Dairy Sustainability Award


Adaptation Methods and Bioclimate Scenarios

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Study Adaptation of Livestock to Climate Change?

The complex of our study was aimed at exploring the effects of warm climate in farm animals, at constructing bioclimate scenarios and at developing adaptation options that may permit to alleviate the impact of hot climate on the livestock industry.

What Did We Do?

Most of our research work was relative to dairy cows. We realized several studies by different experimental approaches. First of all, we have been running numerous experiments under climate chamber conditions followed by a number of field studies. To reach more precise objectives, we also performed several in vitro studies on selected cell populations. In the last few years we have been also building and exploring multi-year datasets and measuring the impact of air temperature and relative humidity on performances and health in intensively managed dairy cows/pigs. Finally, we have been working on bioclimate, namely temperature humidity index (THI), characterization of selected geographic areas both retrospectively and in terms of scenario (Figure 1).

climate graph for lactera proceedings paper

JJA anomolies 2021-2030 vs CiNo

JJA anomolies 2031-2040 vs CliNo

Figure 1. Regional distribution of Mediterranean summer (JJA, June-July-August) temperature humidity index anomalies versus CliNo (Climate Normal, 1971-2000 period) for the four decades 2011-2020, 2021-2030, 2031-2040, and 2041-2050 (Segnalini et al., in press)

What Have We Learned?

We have learned that the ability of dairy cows to breed, grow, and lactate to their maximal genetic potential, and their capacity to survive and keep healthy is dramatically influenced by climate, meteorological events and biological environment and their interactions. Climate and meteorological features affect animals both indirectly and directly. Indirect effects include those exerted on quality and quantity of crops and pastures and on survival of pathogens and/or their vectors. The direct effects of air temperature on animals depend on their ability to maintain a normal body temperature under unfavourable thermal conditions. A series of studies carried out at Mediterranean level, one of the hot spot in the context of global warming, pointed out a constant increase for livestock of the risk to suffer from heat stress related conditions. Climate change is imposing a growing attention to adaptation measures, which may help farm animals to face with conditions of environmental warmth. These may include set up of meteorological warning systems, revision of health maintenance strategies, correction of feeding plans, shade, sprinkling, air movement, active cooling, genetic selection, and others.

Future Plans

To develop comprehensive frameworks to identify and target adaptation options that are appropriate for specific contexts.


Alessandro Nardone, Professor, Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy

Nicola Lacetera, Professor, Dipartimento di scienze e tecnologie per l’Agricoltura, le Foreste, la Natura e l’Energia (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy

Additional Information

1. Effects of climate changes on animal production and sustainability of livestock systems.

2. Temperature humidity index scenarios in the Mediterranean basin.


We gratefully acknowledge National (CNR, MIUR, MIPAF) and International (UE) funding bodies, and Umberto Bernabucci, Bruno Ronchi, Andrea Vitali, Maria Segnalini, Alessio Valentini, Patrizia Morera, Loredana Basiricò, M. Stella Ranieri and others in quality of co-authors of the numerous peer-reviewed papers we published in this field during the last 20 years.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.