Air Regulations and How the Bedded Beef Barn Research Study Relates to Reporting

monoslope beef barnThis presentation from the Beef Facilities Conference focused on air quality regulations and what it might mean regarding the research project. You can find a paper in pages 10-17 of the written proceedings published by Iowa State University.

What Are the Relevant Air Regulations?

The federal air quality regulations that may apply to animal feeding operations include:

  • EPCRA – Environmental Planning and Community Right to Know Act
  • CERCLA – Comprehensive Environmental Response Compensation and Liability Act or “Superfund” (not discussed in detail because EPA has determined animal operations are exempt)
  • Mandatory Greenhouse Gas Reporting Rule More…
  • Clean Air Act More…
  • State and local regulations
  • Occupational Health and Safety Administration (OSHA)

What Does the Research Project On Bedded Beef Barns Show?

It is difficult to draw broad conclusions on the air emissions from a single study and in the absence of guidance from the U.S. Environmental Protection Agency (EPA). The emissions of hydrogen sulfide, carbon dioxide, and particulates are likely to be below most regulatory threshholds for worker health or reporting. Ammonia is the one area where daily emissions from a system could reach amounts requiring reporting under EPCRA for large operations.

Acknowledgements

Presenter: Rick Stowell, University of Nebraska rstowell2@unl.edu

This page was developed as a part of the Mono-Slope Air Quality Research project funded by Agriculture and Food Research Initiative Competitive Grant no. 2010-85112-20510 awarded to South Dakota State University, USDA ARS U.S. Meat Animal Research Center, Iowa State University, and University of Nebraska – Lincoln from the USDA National Institute of Food and Agriculture. For more information about the research study, contact Erin Cortus erin.cortus@sdstate.edu or Mindy Spiehs mindy.spiehs@ars.usda.gov. For more about the outreach and extension, contact Beth Doran doranb@iastate.edu. project partner logos - South Dakota State University, USDA-ARS, Iowa State University, and University of Nebraska - Lincoln

Cattle Performance and Comfort In Different Types of Housing Systems

monoslope beef barnThese presentations were recorded at the Beef Facilities Conference and focused on cattle comfort and performance with four different barns. The accompanying papers are in pages 27-37 of the written proceedings.

Comparing Open Lot, Partially Covered, and Monoslope (Completely Covered) Systems

Robbi Pritchard, South Dakota State University (SDSU)

When SDSU rebuilt their cattle feeding facilities, the decision was made to compare three different systems: 

  • earthen lots with no overhead roof
  • lots that are partially roofed
  • a monoslope bedded barn in which the entire facility is covered

The feedlot manager tracked feed deliveries, cattle performance, carcass characteristics, and labor inputs for each system for two years. The results of that are presented in the video to the right.

Comparing Hoop Buildings and a Semi-Confinement Facility for Beef Cattle Production

Dan Loy and Shawn Shouse, Iowa State University

The design of beef facilities have evolved over time. The presenters review changes they have seen as the use of both types of facilities has increased. Research data from a University farm compared animal performance, carcass characteristics, feed conversion, and mud score.

Lastly, the presenters discussed the effect of pen density on cattle fed in bedded hoop barns.

Use of Rubber Mats in Slatted-Floor Buildings

Russ Euken, Iowa State University

Rubber mats represent a significant investment. This presentation examines research into animal performance and behavioral indicators of animal comfort when using rubber mats versus uncovered concrete slatted floors. Some of the research cited also compared to bedded systems.

Related: Virtual tour of a slatted floor beef barn with rubber mats

Acknowledgements

This page was developed as a part of the Mono-Slope Air Quality Research project funded by Agriculture and Food Research Initiative Competitive Grant no. 2010-85112-20510 awarded to South Dakota State University, USDA ARS U.S. Meat Animal Research Center, Iowa State University, and University of Nebraska – Lincoln from the USDA National Institute of Food and Agriculture. For more information about the research study, contact Erin Cortus erin.cortus@sdstate.edu or Mindy Spiehs mindy.spiehs@ars.usda.gov. For more about the outreach and extension, contact Beth Doran doranb@iastate.edu. project partner logos - South Dakota State University, USDA-ARS, Iowa State University, and University of Nebraska - Lincoln

Particulate Matter Adjacent to Cattle Deep-Bedded Monoslope Facilities

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Study Monoslope Barns and Air Quality?

Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region.  Many of these facilities add organic bedding material to the pens once or twice per week.  Particulate matter concentrations and emissions from these facilities have not been evaluated.  The objective of this study was to quantify particulate matter concentration adjacent to a deep-bedded mono-slope facility housing cattle and to compare the concentrations during normal operation and a bedding event.

Average 24-hr total particulate matter concentration of ambient air collected from a beef deep-bedded monoslope barn.

What Did We Do?

Three Lo-Vol Particulate Samplers were placed 4.6 m from the north side of the building, and three were placed 4.6 m from the south side of the building with 36.6 m between the samplers on each side.  Average sampler flow rate was 16.7 L/min.  Samples were collected over two five-day periods (April and June 2011).  Each sample period included three 24-hr collections during normal operation and two 3-hr collections during a bedding event.  Filters were collected, conditioned for 48 hr at 21.1 °C and 35% humidity, then weighed in micrograms and analyzed on a Beckman Coulter LS 230 to determine total suspended particulate matter (TSP).

What Have We Learned?

Average 3-hr total particulate matter concentration of air collected during a bedding event of beef deep-bedded monoslope barn.

During the April sampling period, average 24-hr TSP concentration ranged from 40.1 to 91.4 µg/m3 during days of normal operation. Average 3-hr particulate matter concentration during bedding events ranged from 281.8 to 540.5 µg/m3.  During the June sampling period, 24-hr TSP concentration on days of normal operation ranged from 52.7 to 64.6 µg/m3, while 3-hr particulate matter concentration during bedding events averaged 302.4 to 1684.2 µg/m3. Sweeten et al. (1998) reported average TSP concentrations of 410 µg/m3 measures for 24 hr periods on open feedlots in Texas. In general, particulate matter concentrations adjacent to the deep-bedded monoslope facility were lower than previously reported for open lot feedlots.  Concentrations of TSP were higher during the 3-hr bedding event than during normal operation.

Future Plans

To compliment this research, data has been collected from two monoslope beef barns over the past two years as part of an AFRI-funded research grant.  MiniVol particulate samplers were used to determine PM-10 and PM-2.5 concentrations over 24-hr periods.  Data collected from this project will further define the particle size of dust being emitted from these facilities.

Authors

Mindy J. Spiehs, Research Animal Scientist, USDA – ARS Meat Animal Research Center, Clay  Center, NE, mindy.spiehs@ars.usda.gov

Greg A. Holt, Research Leader, USDA- ARS Cotton Production and Processing Research Unit, Lubbock, TX

Kris D. Kohl, Extension Agricultural Engineer, Iowa State University Extension and Outreach, Storm Lake, IA

Beth E. Doran, Extension Beef Specialist, Iowa State University Extension and Outreach, Orange City, IA

David B. Parker, Professor and Director, Commerical Core Laboratory, Palo Duro Research Center, West Texas A & M University, Canyon, TX

Erin Cortus, Assistant Professor, South Dakota State University, Brookings, SD

Additional Information

Acknowledgements

The authors wish to acknowledge James (Bud) Welch and Alan Kruger for assembly and disassembly of  the particulate matter sampling equipment and Ron and Clayton Christensen for the use of their cattle facility.  Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  USDA is an equal opportunity provider and employer.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Manure management and temperature impacts on gas concentrations in mono-slope cattle facilities

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Study Air Emissions from Mono-slope Beef Barns?

Mono-slope buildings (Figure 1) are one type of roofed and confined cattle feeding facility that is becoming increasingly popular in the Northern Great Plains. However, little is known about the impact of these housing systems and associated manure management methods on the air quality inside and outside the barn.  The objective of this study was to determine gas concentrations in mono-slope beef cattle facilities and relate these concentrations to environmental and manure management factors.

Figure 1. View of a monoslope cattle facility from the northeast. Adjustable curtains in the rear (north) wall are used to limit airspeed through the barn during colder weather.

What Did We Do?

Four producer-owned and operated beef deep-bedded mono-slope facilities were selected for monitoring. Two barns maintained deep-bedded manure packs (Bedpack), whereas two barns scraped manure and bedding from the pens weekly (Scrape). Each site was monitored continuously for one month each quarter for two years to capture both daily and seasonal variations. At each facility, the environment-controlled instrument trailer and associated equipment were located adjacent to the barn. The trailer contained:  a gas sampling system (GSS) that consisted of Teflon tube sample lines connected to a computer-controlled sampling manifold, gas analyzers, computer, data acquisition system, calibration gas cylinders, and other supplies. In addition to the sampling lines, there were environmental instruments to measure the airflow and weather conditions for two pens in each barn. The analyzers and sensors used are summarized in Table 1.

Table 1. Analyzers and sensors used for air quality and environmental monitoring

Ammonia, hydrogen sulfide and methane concentrations were sequentially sampled from two south wall locations and three north wall locations per pen. The maximum hourly mean concentrations measured at the north or south wall of either pen in the barn were used in this analysis. The seasonal average hourly means of maximum concentrations and corresponding environmental variables were calculated.

What Have We Learned?

Figure 2. Seasonal averages of maximum hourly mean ammonia (a), hydrogen sulfide (b) and methane (c) concentrations for the bedpack and scrape manure management systems monitored in four monoslope cattle facilities, as influenced by ambient temperature.

The seasonal average hourly maximum ammonia concentration ranged from 0.6 to 3.3 ppm with the Scrape barns and from 0.2 to 7.1 ppm with the Bedpack barns (Fig 2a). The range of maximum hydrogen sulfide concentrations was 0 to 61 ppb in the Scrape barns and 0 to 392 ppb in the Bedpack barns (Fig 2b). The maximum methane concentration ranges were 4.9 to 10.6 and 3.1 to 15.8 ppm in the Scrape and Bedpack barns, respectively (Fig 2c). There are indications of differences between gas release rates for bedpack and scrape manure management systems and increased release rates with temperature for ammonia and hydrogen sulfide. Methane concentrations were more consistent between systems and for different temperature conditions.

This project expands the knowledge base of gaseous concentrations from deep-bedded beef barns. This integrated project also provides management techniques that producers can implement to minimize emissions, and improve air quality.

Future Plans

Emission values will be calculated using these concentration data, in conjunction with airflow data, which also varies with site and temperature conditions.

Authors

Erin L. Cortus, Assistant Professor, South Dakota State University, erin.cortus@sdstate.edu

Md Rajibul Al Mamun, Graduate Research Assistant, South Dakota State University

Ferouz Y. Ayadi, Graduate Research Assistant, South Dakota State University

Mindy J. Spiehs, Research Animal Scientist, USDA ARS Meat Animal Research Center

Stephen Pohl, Professor, South Dakota State University

Beth E. Doran, Extension Beef Program Specialist, Iowa State University Extension and Outreach

Kris Kohl, Extension Ag Engineer Program Specialist, Iowa State University Extension and Outreach

Scott Cortus, Engineering Research Technician, South Dakota State University

Richard Nicolai, Associate Professor (Retired), South Dakota State University

Additional Information

Acknowledgements

Project funded by Agriculture and Food Research Initiative Competitive Grant no. 2010-85112-20510 from the USDA National Institute of Food and Agriculture. Technical assistance provided by Alan Kruger, John Holman, Todd Boman, and Bryan Woodbury.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Mono-Slope Beef Barn Air Quality Research Project

monoslope beef barnResearchers and university specialists from USDA’s Meat Animal Research Center (USMARC), South Dakota State University, and Iowa State University recently finished a four-year study looking at mono-slope beef barns and how to improve cattle and environmental performance.

How Do Mono-slope Barns Stack Up For Air Quality?

A research team worked for three years to gather baseline data for the levels of gas emissions from mono-slope beef barns. The study involved a total of four mono-slope beef barns in South Dakota and Iowa. Researchers also evaluated two different manure-handling systems to determine if there are any differences in gas emissions.

The results of that study are summarized in a eight-page publication “Air Quality in Mono-Slope Bedded Beef Barns“. They measured ammonia, hydrogen sulfide, methane, carbon dioxide, and nitrous oxide. The first three are the primary focus of the publication, since those are most commonly associated with beef feedlots. Also discussed are impacts of building orientation, manure-handling system, pen density, bedding type, and curtain opening (ventilation).

Beef Facilities Conference

Over 300 people attended the November, 2013 conference on beef confinement buildings held in Sioux Falls, South Dakota. The recordings and written papers are linked below.

Environmental and Regulatory Aspects of Beef Barns

The page numbers next to each are the location of companion written papers in the Beef Facilities Conference proceedings.

  • Results of Air Quality Research on Mono-slope Bedded Beef Barns – pages 5-9.
  • Air Quality Regulations and implications of the air quality research project – pages 10-17

The third presentation focuses on manure and nutrient production, and nutrient management for manure produced in these systems.

  • Capturing, managing, and using nutrients from the barn – pages 18-21

Producer Panel – Virtual Tours

Four producers shared aspects of their different building designs including ventilation, manure management, what works well, and things they would change. Their summaries are on pages 22-26 of the Beef Facilities Conference Proceedings.

  • Hoop buildings – one farm tour and a short synopsis of different building designs in use in Iowa
  • Mono-slope buildings – narrow and wide designs
  • Slatted floor barn (with rubber mats) – originally built without mats

Cattle Performance and Comfort In Beef Barns

University specialists compared feed intake, animal performance, carcass characteristics, and management considerations with barns compared to other systems. The page numbers next to each are the location of a companion written paper in the Beef Facilities Conference Proceedings.

The third presentation looks at international and domestic research into the use of rubber mats in deep pit barns with concrete slats.

Webcasts

Two live webinars were recorded and archived. The presenters included researchers, extension specialists, and farmers.

Open Houses Provide Opportunities to Learn More

Photo of a bedded beef barn in South Dakota.
It was standing room only as participants listened to station presentations in the alleyway of the mono-slope barn.

As part of the outreach plan for this project, a series of open houses were scheduled to inform cattle producers, regulatory and technical agency staff, Extension employees, service providers and legislative and local policy-makers about air quality management and manure and environmental issues with these facilities.

Over 200 people from Iowa, Minnesota, South Dakota and Nebraska attended the Mono-Slope Beef Barn Open House in June of 2011. The open house was hosted by Ron and Clayton Christensen of Royal, Iowa and featured barn and manure management, cost-sharing opportunities, the tri-state air quality project and environmental regulations.

The open house was organized by ISU Extension and Outreach, SDSU Ag and Biosystems Engineering, and the USDA Meat Animal Research Center at Clay Center, NE.  Sponsors included Animal Medical Centers of Spencer, Clay County Cattlemen’s Association, Clay County Farm Bureau, Coalition to Support Iowa’s Farmers, Farm Credit Services of America -Emmetsburg, Spencer Ag Center and Spencer Chamber of Commerce Ag Committee.

second open house was hosted in South Dakota in August of 2011. The open house was hosted by Goodwin Heritage Cattle Company, with approximately 125 people in attendance from South Dakota and neighboring states. Sponsors included Coteau Hills Cattlemen’s Association, Watertown Chamber of Commerce Ag Committee, SPN & Associates, Glacial Lakes Energy LLC., Landmark Builders Inc., South Dakota Farm Bureau, Ag United for South Dakota, Banner Associates and Form-A-Feed, Inc.

As a result of the two open houses:

  • 95% had a better understanding of the air quality regulations and why this research is needed*
  • 88% learned where they could find financial resources to construct a mono-slope barn*
  • 89% had improved knowledge about how gases and dust are measured*

*Based on 19.7% participation in a short survey after each open house

Learn more about the successes of these open houses.

A facility tour, Science Behind Environmental Policy, was held June 22, 2012 in NW Iowa.  This tour was attended by state and federal legislators, state policy makers and stakeholders representing Extension and university specialists. Enthusiasm for research efforts was proclaimed by the legislators. See what they learned.

NW Iowa cattlemen listened to Mindy Spiehs, researcher with USDA ARS Meat Animal Research Center at Clay Center, share progress about the Tri-State Air Quality Project.  The update and tour at the Christensen barn were part of a NW regional meeting sponsored by the Iowa Cattlemen’s Association on August 23, 2012.

Mindy Spiehs
Mindy Spiehs talks about the Tri-State Air Quality Project.

Waste to Worth Conference Presentations

In April, 2013 researchers presented air emissions results from this project at the Waste to Worth: Spreading Science and Solutions conference in Denver, CO. These proceedings include a short written paper, recording and links to additional information. The different aspects presented were:

The above proceedings compliment the Beef Facilities Conference recordings and webcasts on the research project (both further up on this page).

Acknowledgements

This page was developed as a part of the Monoslope Beef Barn Air Quality Research project that was funded by Agriculture and Food Research Initiative Competitive Grant no. 2010-85112-20510 awarded to South Dakota State University, USDA ARS U.S. Meat Animal Research Center, Iowa State University, and University of Nebraska – Lincoln from the USDA National Institute of Food and Agriculture. For more information about the research study, contact Erin Cortus erin.cortus@sdstate.edu or Mindy Spiehs mindy.spiehs@ars.usda.gov. For more about the outreach and extension, contact Beth Doran doranb@iastate.edu.

project partner logos - South Dakota State University, USDA-ARS, Iowa State University, and University of Nebraska - Lincoln

Mono-Slope Beef Barns

There is growing interest in feeding cattle in bedded confinement buildings for a multitude of reasons including (but not limited to): performance advantages, limited space for open lots, and keeping manure dry as well as preventing feedlot run-off and reducing environmental concerns. Oftentimes these confined cattle are housed in mono-slope barns.

What Is a Monoslope Beef Barn?

This video is excerpted from a webcast presentation by Shawn Shouse, Iowa State University

 

 

Mono-slope barns, by definition have only one slope to their roof and are usually naturally ventilated. They are typically positioned to take advantage of seasonal climatic conditions. This means in the northern hemisphere the higher side would be south-facing with the lower side to the north. This allows for shade in the summer and sun exposure in the winter.  In bedded units, the bedding absorbs moisture and provides a softer surface for cattle to walk and lay on.

Comparing Confinement Farms with Conventional Feedlots

 

Shawn Shouse of Iowa State University compares
confinement systems to open lots for beef cattle.

 

While there are many advantages to mono-slope beef barns, the question that has been raised is: “What is the quality of air in these barns?”. A recent, on-going research project takes on this question.

Recommended Reading

Webcasts

Inquiries about the mono-slope barns may be directed to:

Beth Doran, Iowa State University (phone: 712-737-4230)

Kris Kohl, Iowa State University (phone: 712-732-5056)

Erin Cortus, South Dakota State University (phone: 605-688-5141)

Mindy Spiehs, U.S. Meat Animal Research Center (phone: 402-762-4271)

This page was developed as a part of the Monoslope Research project that was funded by Agriculture and Food Research Initiative Competitive Grant no. 2010-85112-20510 awarded to South Dakota State University, USDA ARS U.S. Meat Animal Research Center, Iowa State University, and University of Nebraska – Lincoln from the USDA National Institute of Food and Agriculture.

project partner logos - South Dakota State University, USDA-ARS, Iowa State University, and University of Nebraska - Lincoln

Results of Mono-Slope Beef Barn Air Quality Research – Archived Webcast

Researchers and university specialists from South Dakota State University, USDA’s Meat Animal Research Center (USMARC), and Iowa State University Extension are wrapping up a four-year study looking at concentration and emission measurements in comparison with management techniques for mono-slope beef barns and will share the results of their study. This presentation was originally broadcast on July 19, 2013. More… Continue reading “Results of Mono-Slope Beef Barn Air Quality Research – Archived Webcast”

Mono-Slope Beef Barn Design and Management

monoslope beef barnWhat is a mono-slope beef barn? It’s a newer style barn for cattle that is becoming increasingly popular in the upper Midwest.

This webinar allows you to discover what exactly is a mono-slope barn and why beef producers are building them. This presentation is part of a four-year mono-slope air quality research project and was originally broadcast on May 17, 2013. More… Continue reading “Mono-Slope Beef Barn Design and Management”