About the Farm Manure-to-Energy Initiative

Farm Manure Energy Initiative logoThe Farm Manure-to-Energy Initiative in the Chesapeake Bay region is helping farmers demonstrate and evaluate the performance thermal technologies that convert surplus poultry litter to electricity or heat.

Case studies conducted from 2012-2015 evaluated four technologies on five working farms in areas of the Chesapeake watershed where manure management is especially important for protecting water quality.

sunrise over flintrock farm

Flintrock Farm in Lancaster County, PA, will heat at least four poultry houses by feeding poultry litter into an on-farm energy system.

The systems were evaluated for technical, environmental, and financial performance. Detailed information on the results of the evaluations can be found in the 2016 Final Report. Project leaders include National Fish and Wildlife Foundation, Chesapeake Bay Funders Network, Farm Pilot Project Coordination, Inc., Sustainable Chesapeake, University of Maryland Center for Environmental Science, University of Maryland Environmental Finance Center, Virginia Cooperative Extension, Lancaster County Conservation District (of Pennsylvania), Virginia Tech Eastern Shore Agricultural Research and Extension Center, and the Eastern Shore Resource Conservation & Development Council.

For more information, please contact Kristen Hughes Evans of Sustainable Chesapeake at Kristen@susches.org.

A Review of WV Poultry Litter Analysis from 1994 to 2010 That Demonstrates a Continual Fluctuation in Nutrient Concentrations Resulting from Changes In Poultry Feed Formulations and New Storage Methods

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Study Nutrient Concentrations in Poultry Manure?

The nutrient management planning process requires continual nutrient analysis of generated poultry litter to determine accurate agronomic land application rates.  To better understand the challenges that nutrient management planners have faced with these nutrient concentration changes in poultry litter, an analysis was conducted of sample results submitted to the West Virginia Department of Agriculture Nutrient Management Lab, from 1994 to 2010. The number of produced Broilers in WV for 2010 was 87,600,000; the number of turkeys grown in WV during 2010 was 3,100,000 and the number of Layers averaged 1,200,000.  NASS did not report pullet numbers.  Data was analyzed by bird type including, Broilers, Layers, Pullets and Turkeys.  

Lab analysis included TKN, Ammonia, P2O5, K2O, Cu, Ca, Mg, WEP (Water Extractable Phosphorus) and Moisture content.  Ammonia concentrations increased during the study period for all bird types, broilers and turkeys had ammonia concentrations averaging 15 lbs per ton in 1995 and had doubled to 30 lbs per ton of litter in 2010. This increase of ammonia may be attributed to the adoption by poultry growers of long term in-house litter storage.   P2O5 concentrations in broiler litter have consistently declined over the study period likely due to addition of phytase enzyme to feed allowing the reduction of P in the broiler diets.  Average P2O5   levels in 1995 were 60 lbs per ton and had dropped to 40 lbs per ton of litter by 2012.  This data can also provide estimates of watershed nutrient loading used in the Chesapeake Bay, TMDL process and improve the Bay watershed model.

Authors

Tom Basden, West Virginia University    tom.basden@mail.wvu.edu      

Ed Rayburn and Joe Moritz, West Virginia University, Morgantown WV

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

 

Reducing the Impacts of Poultry Litter on Water Quality by Developing Alternative Markets for Poultry Litter Biochar

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Manure from confined animal operations is an environmental liability because of the potential for water and air pollution. The poultry industry in the Chesapeake Bay watershed is under increased regulatory scrutiny due to nitrogen and phosphorous inputs into the Bay. Although poultry litter (PL) is valued as a fertilizer, the cost of shipping the bulky material out of the watershed is prohibitive. One potential solution is to turn the excess litter into energy through pyrolysis. If a market can be developed for poultry litter biochar, more N and P could be removed from the Chesapeake Bay watershed.

Our overall program goals are to develop a comprehensive strategy to convert poultry litter from an environmental liability into an economic and ecological asset and to develop a comprehensive conceptual model for improving poultry litter waste management through market-driven alternatives. Our specific objectives are to characterize the properties and variability of biochar from a commercial poultry/ litter biochar producer, evaluate PL biochar for two potential commercial uses; greenhouse plant production and as an amendment for degraded mine soils.

Why Is It Important to Develop Alternative Markets for Biochar?

Figure 1. Our biochar supplier, Frye’s Poultry Farm in Wardensville, WV.

Excess phosphorus (P) in the Chesapeake Bay watershed has created water quality problems within the Bay. A major source of this P originates from confined animal feeding operations (CAFOs); within the West Virginia portion of the watershed, primarily in the form of poultry production. The lack of sufficient, suitable cropland on which to spread the manure from these operations has created the need to export P out of the watershed. One potential solution to this challenge may come from the gasification of poultry litter. Gasification produces energy and a carbonaceous byproduct (Figure 1) for which a number of applications have been suggested, including use as a soil amendment. Our long-term objectives are to determine the beneficial uses for a commercially produced poultry litter biochar (PLB) with the goal of generating a market for PLBs that will promote the transport of P out of the Bay watershed. In this work, we describe the particle size distribution and nutrient content of two different pyrolysis oven batch runs of poultry litter from our commercial producer (M-type and W-type).We describe effects of these PLB types on lettuce seed germination and seedling growth and its use as a substitute greenhouse media for cyclamen production.  We also describe the results of an experiment using PLB for mine soil reclamation and cellulosic biomass production.

What did we do?

M-Type and W-type PLBs were mechanically sieved into six size classes in duplicate and then extracted with dilute hydrochloric (0.05M) and sulfuric (0.05M) acids. Solution sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and P concentrations were determined and converted to mg (kg PLB)-1. Lettuce (Lactuca sativa var. Black Simpson) seed was planted into a commercial top soil amended with two rates of M-type biochar (3.18 g kg-1) and (9.09 g kg-1), some of which had been rinsed with water for 24 or 48 hours to remove salts, with no biochar and fertilizer controls, in two 8 x 8 Latin Square designs. In one Latin Square seedlings were thinned to two per cell and allowed to grow until root bound. Germination percent and dry mass were determined. The second PLB product (W-type) was used untreated as a substitute potting media for greenhouse cyclamen (Cyclamen persicum) production The treatments were a commercial mix, 1:1 peat:perlite + 64 g dolomitic lime or + 112 g W-type PLB. One of the products (M-type) was washed in tap water in an attempt to reduce salt content and then leached and unleached PLB (2.5 kg m-2) was used (lime and fertilizer controls) in a factorial experiment using switchgrass (Panicum virgatum) and Miscanthus sinensis transplants for mine soil reclamation.

What we have learned?

The M-type PLB had more, fine particles (<60 mesh) than did W-Type). The M-type fine particles (<60 mesh) had more Ca and K whereas the coarser W-type particles (>60 mesh) had more K. PLB did not have a significant effect on lettuce germination (> 85%) at either concentration or rinsing treatment. PLB treatments also had no effect on aerial biomass of lettuce yield. The inorganic fertilizer treatment was the only treatment with aerial biomass significantly different (higher) than the control. Cyclamen growth was initially slower, but by the end of the experiment, yields were equivalent. It is too soon to draw conclusions from the mine soil reclamation experiment.

Future plans

We will continue monitoring switchgrass and Miscanthus growth and mine soil property changes in response to biochar applications and are seeking additional disturbed soil sites for new experiments. Because biochar is known to sorb metal contaminants, we have initiated laboratory experiments to evaluate the effectiveness of biochar for the remediation of brownfield sites. We also have plans to determine the stability of biochar in a variety of soils and the effects of biochar applications on soil microbial communities and greenhouse gas emissions.

Authors

Louis M. McDonald, Professor, LMMcDonald@mail.wvu.edu

Andrew Burgess, Research Assistant Professor

Jeff Skousen, Professor

Joshua L. Cook, Graduate Student

Sven Verlinden

Walter E. Veselka, IV, Research Associate

James T. Anderson, Professor. Environmental Research Center, West Virginia University

Additional information

Anderson, J. T., C. N. Eddy, R. L. Hager, L M. McDonald, J. L. Pitchford, J. Skousen, and W. E. Veselka IV. 2012. Reducing impacts of poultry litter on water quality by developing markets for energy and mine land reclamation. Athens: ATINER’S Conference Paper Series, No: ENV2012-0069. 12pp. http://www.atiner.gr/papers/ENV2012-0069.pdf

Acknowledgements

Support for this project was provided by NOAA, NSF, blue moon fund, Frye Poultry Farms, and the Davis College of Agriculture, Natural Resources and Design and Environmental Research Center at West Virginia University.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Farm-System Modeling to Evaluate Environmental Losses, Profitability, and Best Management Practice Cost-Effectiveness

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

To meet Chesapeake Bay Total Maximum Daily Load requirements for agricultural pollution, conservation districts and farmers are tasked with implementing best management practices (BMPs) that reduce farm losses of nutrients and sediment. The importance of the agricultural industry to the regional economy highlights the need for determining cost-effective BMP solutions given the geographical and operational characteristics of these farms. This study evaluated both the environmental risk and farm profitability of common farm-level management practices for three major farm types in the region: crop, tractor-based (“English”) dairy, and horse-drawn (“Amish”) dairy.

Whole-farm simulations were conducted with the Integrated Farm System Model, a multi-year, process-based simulation model, to facilitate a broader understanding of the challenges for the farmers in finding financially feasible and environmentally sustainable solutions. Strip cropping, conservation tillage, cover cropping, and nutrient management BMPs generally reduced nutrient and sediments losses from all three farm types. However, scenarios that reduced phosphorus and sediment losses generally promoted more leaching of nitrogen. Double cropping corn with winter wheat combined with improved nutrient management was the most profitable practice for the crop farm, increasing average farm profitability by 92% over the baseline condition, while reducing combined nitrogen and total phosphorus losses by 13% and 23%, respectively.

Net profitability of the dairy farm was increased only by decreasing manure storage or using improved nutrient management. For the horse-drawn dairy, cover-cropping and harvest of rye silage combined with increased nutrient management provided the greatest increase in farm profit (+8%) and also reduced phosphorus and nitrogen losses.

Horse-drawn machinery through puts and increased human labor hours were required to simulate a typical Lancaster Old Order Amish dairy operation in Southeastern Pennsylvania.

Why Study Farms As a System?

Because southeastern Pennsylvania is a significant environmental contributor of the Chesapeake Bay, agricultural land management is under intense scrutiny by restoration groups. It is imperative to improving water quality that economically and culturally acceptable nonpoint source control practices be explored, developed, and evaluated. This is true for “contemporary” crop and dairy farms in the region as well as those that are more conservative in their use of electrical- or gas-powered farming equipment, described in this study as “Lancaster Old Order Amish”. Evaluation from a whole-farm perspective enables practical assessments of tradeoffs among management practice combinations and is particularly relevant when effectiveness relies on the willingness and dedication of the farm operators.

What Did We Do?

The expertise of regional conservationists and pooled results from farmer surveys were used to determine three major farm types in southeastern Pennsylvania and design potentially acceptable management combinations for each type. Three baseline farms were described: 400 ha corn-soy-wheat crop farm; 100 cow, 120 ha contemporary dairy; and 24 ha Lancaster Old Order Amish dairy. Whole-farm impacts were assessed with the Integrated Farm System Model (IFSM), a multi-year, process-based simulation model. Environmental tradeoffs between nitrogen, phosphorus, and sediment losses were evaluated and financial cost-benefits through change in annual net return for the farmer were analyzed.

What Have We Learned?

Strip cropping, conservation tillage, cover cropping, and improved nutrient management generally reduced nutrient and sediment losses from all three farm types. However, scenarios that reduced phosphorus and sediment runoff losses generally increased nitrogen leaching to groundwater. Double cropping corn and winter wheat under improved nutrient management was the most profitable combination for the crop farm, increasing average farm profitability by 92% over the baseline while reducing combined nitrogen and total phosphorus losses by 13% and 23%, respectively. Net profitability of the contemporary dairy farm was increased only by decreasing manure storage or using improved nutrient management. For the Lancaster Old Order Amish dairy, cover-cropping and harvest of rye silage combined with increased nutrient management provided the greatest increase in farm profit (+8%) and also reduced phosphorus and nitrogen losses.

Future Plans

Cost-effective recommendations from a whole farm perspective that account for unique characteristics of particular farm types can aid officials in determining locally agreeable methods for efficiently addressing regional priority pollutants. As farms adopt and implement suggested management changes, additional management practices of interest can be evaluated. Also, IFSM is being expanded to consider air emissions and carbon sequestration effects of the management practices.

Authors

Tamie L. Veith, Agricultural Engineer, USDA-ARS, tamie.veith@ars.usda.gov

Andrew D. McLean, Water Resources Designer, McCormick Taylor, Inc.

C. Alan Rotz, Agricultural Engineer, USDA-ARS

James M. Hamlett, Professor of Agricultural and Biological Engineering, The Pennsylvania State University

James S. Shortle, Distinguished Professor of Agricultural and Environmental Economics, The Pennsylvania State University

Additional Information

Integrated Farm System Model: http://www.ars.usda.gov/Main/docs.htm?docid=8519

McLean, A. D., 2012. Modeling best management practices on representative farms in Southeastern Pennsylvania. Master’s thesis, PA State University, University Park, PA. https://etda.libraries.psu.edu/paper/14093/, available Dec. 05, 2012.

Acknowledgements

This work contributes to the Conservation Effects Assessment Project (CEAP), jointly funded, coordinated, and administered by United States Department of Agriculture’s Natural Resources Conservation Service, Agricultural Research Service, and National Institute for Food and Agriculture. We would like to thank Mike Hubler and Larry Baum from Dauphin County Conservation District and officials at Lancaster and Lebanon County Conservation Districts for their advice and guidance categorizing and characterizing farms of Dauphin County and southeastern Pennsylvania. Thanks also to Kristen Saacke-Blunk and Matt Royer from Conewago Creek Collaborative Conservation Initiative for their time and input.  Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Chesapeake Bay 2012 – Implications of the TMDL

This is a follow-up webcast to Changing Management of Nutrients in the Chesapeake Bay Watershed. That initial webcast told the story of why the TMDL was developed and the nuts and bolts of the TMDL as well as the next steps from 2010 to 2025. This webcasts shows the state response to the TMDL, the legal considerations of the TMDL and the effectiveness of policy interface between agriculture and the environment. This presentation was originally broadcast on February 17, 2012. More… Continue reading “Chesapeake Bay 2012 – Implications of the TMDL”