Ciprofloxacin residues in biosolids compost do not selectively enrich populations of resistant bacteria

Biosolids and livestock manure are valuable high-carbon soil amendments, but they commonly contain antibiotic residues that might persist after land application. While composting reduces the concentration of extractable antibiotics in these materials, if the starting concentration is sufficiently high then remaining residues could impact microbial communities in the compost and soil to which these materials are applied. To examine this issue we spiked biosolids compost feedstock with ciprofloxacin at a concentration (19 ppm), approximately 5-fold higher than normally detected by LC-MS/MS (1-3.5 ppm). This feedstock was  placed into mesh bags that were buried in aerated compost bays. Once a week a set of bags was removed and analyzed (treated and untreated, three replicates of each; 4 weeks). Addition of ciprofloxacin had no effect on recovery of resistant bacteria at any time point (P = 0.86), and a separate bioassay showed that aqueous extractions from materials with an estimated 59 ppm ciprofloxacin had no effect on the growth of a susceptible strain of E. coli (P = 0.28). Regression analysis showed that growth of the susceptible strain was diminished when compost was spiked with a wide range of ciprofloxacin (0-160 ppm; P<0.007), consistent with adsorption as the primary mechanism of antibiotic sequestration. Because bioassays reflect the bioavailability of residues whereas analytical assays do not, we recommend that similar bioassays be incorporated into studies of other antibiotic residues to better assess the risk that these residues pose for proliferating resistant populations of bacteria. 

Author

Youngquist, Caitlin           caitlinmp@gmail.com     University of Wyoming

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

What are the sources of bacteria in your watershed? They may not be what you expect

Why Study Bacteria in Water?

According to the 305(b) report, the majority of waterbodies in the US do not meet established water quality standards. Over half (51%) of river miles assessed in 2010 were impaired. Pathogens are the leading cause of water quality impairment in rivers and streams of the US, impairing 16% of river/stream miles assessed. Computer models used to assess bacteria sources and loads in impaired watersheds are generally able to attribute loadings to specific land uses or in some cases specific animal categories based on known or estimated animal population numbers and fecal production rates. To provide better data on the predominant animal sources of bacterial impairments, Texas initiated a bacterial source tracking (BST) program in 2003.

What did we do?

Texas BST program uses a combination of two methods, ERIC PCR and riboprinting. To support this program, Texas assembled an E. coli BST library consisting of more than 1,600 E. coli isolates collected from over 1,400 different samples and representing in excess of 50 animal classes. Using this library, comprehensive BST has been conducted in dozens of watersheds across the state (Figure 1) to date.

Figure 1. Locations of BST projects in Texas

Figure 1. Locations of BST projects in Texas.

What have we learned?

Throughout these studies, wildlife contributions have been found to be the predominant source of bacteria (Figure 2) with non-avian wildlife being a primary contributor. Similarly, recent evaluations of small watershed and edge-of-field runoff from grazed and ungrazed pasture and range land have found background loading – loadings from wildlife and naturalized soilborne E. coli – to be significant.

Figure 2. Summary of ten Texas BST study findings.

Figure 2. Summary of ten Texas BST study findings.

This background loading is not currently adequately addressed in most water quality models, total maximum daily loads, or other water quality management efforts. This can have serious implications to application of water quality standards, particularly when applied to storm events where background runoff naturally exceeds water quality standards, as well as to TMDLs and other watershed based plans where ignoring background concentrations may lead to inaccurate load allocations and reductions as well as incongruence of modeling and BST results.

Future plans:

Future plans include working to identify the “unidentified” by continuing to expand the species in the BST library. Additionally, work is ongoing to evaluate naturalized soil borne E. coli and better evaluate wildlife populations in research watersheds. The BST team is also working to improve library independent BST methods.

Authors:

  • Dr. Kevin Wagner, Associate Director, Texas Water Resources Institute, klwagner@ag.tamu.edu
  • Dr. Terry Gentry, Associate Professor, Texas A&M Department of Soil & Crop Sciences, tgentry@ag.tamu.edu
  • Dr. Daren Harmel, Supervisory Agricultural Engineer, USDA-Agricultural Research Service, daren.harmel@ars.usda.gov
  • Dr. George Di Giovanni, Professor, Environmental and Occupational Health Sciences, University of Texas Health Science Center at Houston School of Public Health, El Paso Regional Campus, George.d.digiovanni@uth.tmc.edu
  • Lucas Gregory, Project Specialist & Quality Assurance Officer, Texas Water Resources Institute, lfgregory@ag.tamu.edu
  • Dr. Elizabeth Casarez, Research Associate, University of Texas Health Science Center at Houston School of Public Health, El Paso Regional Campus, Elizabeth.A.Casarez@uth.tmc.edu
  • Dr. Karthikeyan, Associate Professor, Texas A&M Department of Biological and Agricultural Engineering, karthi@tamu.edu

Additional information:

  • Di Giovanni, G.D., E. Casarez, T. Gentry, E. Martin, L. Gregory, K. Wagner. 2013. Support Analytical Infrastructure and Further Development of a Statewide Bacterial Source Tracking Library. Texas Water Resources Institute Technical Report TR-448. College Station, TX: Texas A&M University. (http://twri.tamu.edu/reports/2013/tr448.pdf)
  • TWRI Bacteria Fate and Transport website- http://bft.tamu.edu/
  • Texas Bacterial Source Tracking Library website – http://texasbst.tamu.edu/

Acknowledgements:

Thanks to the Texas State Soil and Water Conservation Board for providing continued funding and support for the Texas Bacterial Source Tracking Program.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Relative Mineralization Rates of Manure and Effect on Corn Grain Yield and N Uptake


Why Is It Important to Study Availability of Manure Nitrogen?

Application of fresh and composted manure as a fertilizer source in corn production has long been a useful practice in many sustainable crop production systems especially when phosphorus, and not nitrogen (N), is the primary nutrient of interest. But when manure is applied as the primary source of N, despite several agronomic advantages associated with manure use, there is a high risk of ground water pollution, and often times, would produce lower yields and grain protein than inorganic fertilizers. Nitrogen mineralization and availability from manure is difficult to predict. Therefore estimating the amount of crop N uptake that may be attributed to manure applied in the same year or to its residual impact, can be a useful approach towards quantifying a supplementary quantity of inorganic N fertilizer with the manure.

What did we do?

yield response to manureThis study measured in situ relative soil N mineralization rates (flux) during three growing seasons of continuous no-till (2013 and 2014) corn in Carrington, ND. We applied fresh (FM) and composted beef feedlot manure (CM) only once in spring 2012 at N rates of 90, 180, and 240lbs/A as FM, and 90 and 180lbs as CM. These rates were applied based on the calculation that 50% of N from FM and 25% of N from CM, would be available the first year. Other treatments were urea at 90, 150, 180, and 240lbs N/A, plus a check at 0lbs/A. In 2013 and 2014 urea was applied to respective plots, based on soil test, to raise the N levels to the respective 2012 N levels. We used the randomized complete block design with four replicates. Three replicates were used to measure soil N (NO3- + NH4+) mineralization rates bi-monthly with Plant Root Simulator probes (PRS™), from the urea fertilized and manured plots at the 0, 90 and 180lb levels at 4-6 leaf growth stage. Four pairs of PRS™ probes were buried in the top 6 inches near corn roots and replaced every two weeks for four sampling dates. We measured yields, protein content, and N uptake.

What have we learned?

N mineralized near corn roots, 2014Yields were generally low in all three years of this study, well below the average for this region. Bi-monthly N mineralization was significantly higher as N increases with urea as N source during the early sampling dates (Figures 2 and 3) and subsequently declined to similar levels as the manure treatments. It is therefore possible that the plants benefited from higher early uptake of N from urea up to the early stages of peak corn N uptake but not enough to produce significantly higher yields than the manure treatments. Analysis of variance showed no significant treatment effects for yields in 2012 (α = 0.05) but grain protein differences were significant. These differences were observed only between the check and 180 lbs N in 2012. The highest mean grain yield was recorded with the 90 lbs N treatment where, the residual soil N at planting was just 33 lbs. The protein level was also significantly higher than the check and CM plot that received 180 lbs N in 2012, and with a soil residual N prior to 2013 planting, at 35 lbs. Each year, grain yields responded positively to N rates (applied as urea) and residual N levels from FM but not with CM. Since corn was grown for three continuous years, unsurprisingly yields declined with years of production since N was not applied to the FM and CM treatments after first application in year one. Similarly, yield decline was observed with urea over the three years but not as steep as the FM and CM treatments. The FM at 240 lbs N, and urea at 180 and 240 lbs treatments produced significantly higher grain protein than the check in 2012 (data not shown). Lower N mineralization and very likely, lower N availability was observed with the CM treatments especially at 180 lbs N, which consistently scored the lowest mean yield and protein in 2013 and 2014. Grain yields were consistently higher at 90 lbs N than 180 lbs N with the CM treatment. N mineralized near corn roots, 2014Summer droughts of 2012 and 2013 at this site and possibly, factors associated with continuous corn production (e.g. disease, temporal N immobilization) compounded the effects of urea treatments even though N uptake was consistently higher with urea. Total N taken up in corn grains from the FM and CM treatments increased with N rates but decreased with time (Table 1). From this study, corn grains took up more N from the plots treated with FM than the CM over the three-year period of the study. Subsequent changes in soil conditions such as moisture, N leaching, temperature, can sometimes limit the efficiency of inorganic fertilizer uses, and favoring low cost alternative uses such as manure especially if the prevailing conditions enhance N mineralization from manure or soil organic matter. Based on N input plus soil N status at the beginning of planting every year, corn N uptake efficiency was in the order: Check>FM>CM>Urea, with efficiency decreasing at higher N rates. The minimum proportion of grain N uptake by any treatment to the single highest N uptake for any urea-N treatment (considered as a reference) in a given year, was 42% for the check in 2013.

soil nitrogen at planting and mean yearly uptake in corn grain

Future Plans

Relative contribution of nitrogen from the fresh and composted manure treatments and residual N will be used to estimate the percentage of N coming from these treatments over a three-year period. This will be used to establish new studies to assess different levels of fertilizer N to apply with manure to improve on the grain protein content and yields.

Authors

Jasper M Teboh, Soil Scientist, Carrington Research Extension Center, North Dakota State University Jasper.Teboh@ndsu.edu

Szilvia Zilahi-Sebess, and Ezra Aberle

Additional information

More detailed results from 2013 can be found in the North Dakota Corn Growers 2013 Annual Report at: www.ndcorn.org/uploads/useruploads/annual_report.pdf

Acknowledgements

North Dakota Corn Growers Association, Western Ag Innovations, Mr. Ron Wiederholt, Mr. Blaine G Schatz (Director, CREC)

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Cationic polymer and high-speed centrifugation effects on pathogen reduction during manure solid/liquid separation


Purpose

To investigate the effects on pathogen reduction using cationic polymer and high speed centrifuge during manure solid/liquid separation.

What did we do?

In this study, polymers effects on pathogen reduction were investigated. Low charge density cationic polyacrylamide (CPAM) was selected because CPAM has been commonly used in manure treatment and it is effective for manure coagulation and flocculation. The effect on pathogen reduction of CPAM was studied in this research. High charge density cationic polydicyandiamide (PDCD) was selected because of its application of water clarification and its the extreme high charge.

E. coli and total coliform counts were examined under three different conditions: buffer media only samples, dairy manure samples and polymer amended dairy manure samples. For each condition, the samples were centrifuged at a series of speed from 0×g to 10,000×g.

What have we learned?

The results demonstrated positive impacts of both polymer and high speed centrifugation on lowering the pathogen levels in the liquid portion of the manure. Low charge density CPAM is effective for manure coagulation and flocculation, however, it has a negligible effect on pathogen reduction in either nutrient rich or nutrient deficient conditions. In contrast, highly charged cationic PDCD does not facilitate coagulation in manure with high solids content, but can potentially inhibit bacterial pathogens and further lower the solids content in the liquid portion of manure after CPAM separation.

The results from this study also demonstrated that high speed centrifugation has a notable impact on solids reduction and pathogen reduction for 10 minutes centrifugation retention time. Centrifugation speed around 4,000×g was capable of reducing pathogen levels higher than 90% from a single separation process. However, high speeds above 6,000×g results in minor additional reduction.

Future Plans

This study investigated cationic polymer and centrifuge speed impact on pathogen reduction and solid/liquid separation in dairy manure. However, there is an increasing concern about reactivation issue in centrifugation of mesophilically digested biosolids. Therefore we have attempted to conducted more research in the future regarding parallels to manure digestion. Until recently, it is still not fully understood why some municipal wastewater facilities experienced reactivation of microorganisms in centrifuged solids while others did not. Thus, it is important to investigate the effect of centrifuge speed in combination with polymer type on indicator and pathogen content of manure digests.

Authors

Troy Runge, Professor, Biological Systems Engineering, University of Wisconsin-Madison trunge@wisc.edu

Additional information

Journal papers have been submitted to Journal of Environmental Quality

Troy Runge, trunge@wisc.edu

Zong Liu, zliu73@wisc.edu

Cationic polymer and high-speed centrifugation effects on pathogen reduction during manure solid/liquid separation

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Analyses of Microbial Populations and Antibiotic Resistance Present in Stored Swine Manure from Underground Storage Pits

 

Why Study Antibiotic Resistance in Manure?

Antimicrobial compounds have been commonly used as feed additives for domestic animals to reduce infection and promote growth. Recent concerns have suggested such feeding practices may result in increased microbial resistance to antibiotics, which can have an impact on human health. As part of our research project we have been studying the commensal microbial populations present in stored swine manure and the swine GI tract. We have extended this work to include studies on the antibiotic resistance present in these populations.

What did we do?

Predominant microbial populations were identified by both pure culture isolations and direct 16S rDNA sequencing of total DNA from swine feces and stored manure samples. Antibiotic resistance was analyzed using similar pure culture isolation methods. Pure cultures were isolated following plating on anaerobic and aerobic media containing tetracycline, tylosin, or erythromycin. Polymerase chain reaction (PCR) analyses using primers based on a variety of antibiotic resistance genes was carries out with both pure culture isolates and total DNA from swine feces and stored manure.

What have we learned?

Results of pure culture isolation and direct 16S rDNA gene sequence analyses indicate that the bacterial populations of the swine GI tract (feces) and stored manure ecosystems are predominantly composed of anaerobic, low mole %G+C, Gram-positive bacteria, most of which represent novel genera and species. Results of antibiotic resistance gene PCR studies demonstrated the presence of a variety of tet (e.g., tetK, tetO) and erm (e.g., ermA, ermC) resistance gene classes in both anaerobic and aerobic pure cultures and total DNA from both swine feces and stored manure, as well as the identification of novel bacteria containing new resistance genes. Comparison of DNA sequences suggests that horizontal transfer of resistance genes between bacterial strains has also occurred. The data indicate that both the swine gastrointestinal (GI) tract and stored swine manure may serve as reservoirs of known and novel antibiotic resistant bacteria and resistan ce genes.

Future Plans

We are interested in developing methods to reduce antibiotic resistance in the swine GI tract and stored manure, and to determine if antibiotic resistance genes present in these ecosystems can be transferred to bacteria that may affect human health (e.g., E. coli, Salmonella, Campylobacter).

Authors

Terence R. Whitehead, Research Microbiologist, USDA-ARS- National Center for Agricultural Utililzation Research, Peoria, IL 61604 terry.whitehead@ars.usda.gov

Michael A. Cotta, USDA-ARS-National Center for Agricultural Utilization Research, Peoria, IL 61604

Additional information

Terence R. Whitehead, NCAUR, 1815 N. University St., Peoria, IL 61615 309-681-6272

USDA-ARS-NCAUR-Bioenergy Research Unit: http://ars.usda.gov/main/site_main.htm?modecode=50-10-05-20

Cotta, M.A., Whitehead, T.R., and Zeltwanger, R.L. Isolation, Characterization, and Comparison of Bacteria from Swine Faeces and Manure Storage Pits. (2003) Env. Microbiol. 5:737-745. http://onlinelibrary.wiley.com/doi/10.1046/j.1467-2920.2003.00467.x/pdf

Whittle, G., Whitehead, T.R., Hamburger, N., Shoemaker, N.B., Cotta, M.A., and Salyers, A.A. Identification of a new ribosomal protection type of tetracycline resistance gene, tet(36), from swine manure pits . (2003) Appl. Environ. Microbiol. 69:4151-4158. http://aem.asm.org/content/69/7/4151.full

Cotta, M.A., Whitehead, T.R., Falsen, E., Moore, E. and Lawson, P.A. Robinsonella peoriae gen.nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. (2009) Int. J. System. Evol. Microbiol. 59:150-155. https://pubmed.ncbi.nlm.nih.gov/19126740/

Whitehead, T.R. and Cotta, M.A. Stored Swine Manure and Swine Feces as Reservoirs of Antibiotic Resistance Genes. (2013) Lett. Appl. Microbiol. 56:264-267. http://onlinelibrary.wiley.com/enhanced/doi/10.1111/lam.12043/

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

PEDV Survivability in Swine Mortality Compost Piles


*Purpose

PEDv has caused significant losses in the Nebraska pork industry and mortality can approach 100%. Disposal of these carcasses is a challenge as they serve as a source of tremendous amounts of infectious virus. Current alternative methods of disposal include rendering, incineration and burial. Rendering trucks may serve as a farm-to-farm vector. Incineration is not feasible for the significant number of mortalities and burial may enable long-term survival of virus in soil and may cause re-infection after disease elimination. Therefore, composting may serve as an ideal solution for disposal and mortalities this would provide a biosecure, safe, and cost-effective method to mitigate on-farm sources of virus. The overall objective of this study was to determine the efficacy of composting as a mortality disposal method following death loss from the porcine epidemic diarrhea virus (PEDv). Validation of time-temperature combinations for PEDv inactivation in mortality compost piles was the primary intended outcome of this project.

What did we do?

PEDv virus challenge protocol modeled one that has shown previous success using weanling pigs (Hesse et al., 2013). Twenty-seven animals (approximately 21-day-old weaned piglets) were sourced from a high-health commercial source that had no history of PEDv and with dams that tested negative for the presence of PEDv-specific antibodies and were negative for fecal virus shedding as determined by PCR. Experimental groups were housed in pens and maintained at appropriate temperature and in accordance with national animal care space requirements. Pigs were given five days of acclimation and maintained on commercial nursery pig diets. Following acclimation, each pig was inoculated orally with 5 mL of virus inoculum (NE 9282) supplemented with gentamicin that had been diluted to a real time PCR assay cycle threshold (Ct) 22. Inocula (feces/intestinal contents) from a natural outbreak of PEDv were used. Pigs were evaluated twice daily for evidence of infection: temperature, pulse, respiration, dehydration, and diarrhea. Fecal samples were collected daily for evaluation of fecal shedding of PEDv. When significant clinical signs of enteric disease were present or pigs became sufficiently ill that the attending veterinarian determined euthanasia was appropriate, animals were humanely euthanized and samples taken for necropsy.

Following necropsy, carcasses from infected and euthanized pigs were composted inside biosecure rooms in the Veterinary and Biomedical Sciences Research Facility at the University of Nebraska – Lincoln. Three compost piles were constructed using commercial sawdust and wood shavings at a target moisture content of 50% w.b. For each pile, an insulated platform with internal dimensions of 121.92 cm (W) x 152.4 cm (L) (48 in x 60 in) was used to contain piles. Platforms were constructed of an outer layer of plywood and an inner layer of PolyBoard sheeting with foam board insulation in between to simulate the linear continuation of the pile and the insulative properties of a compacted soil base. Compost piles were constructed by placing a layer of wood shavings on each base to a depth of 60 cm (24 in), followed by placement of five carcasses in a single layer in the center of the pile followed by a 15 cm (6 in) layer of pile material and a second layer of four carcasses in a single layer. Additional sawdust was placed over and around the carcasses to achieve 60 cm of coverage on the top of the pile. Rooms were maintained at approximately 21°C (70°F) and 25% RH throughout the duration of the project.

Temperature was monitored at ten locations within each pile using Apresys in-transit digital temperature recorders (Apresys, Inc., Duluth, GA) beginning at establishment of the piles and continuing at a 20-min sampling frequency (duration of primary compost cycle not established at time of proceedings submission). Temperature within each pile was also monitored manually using a thermometer at 0, 24, 48, 96 h, and 168 h, and then weekly for the duration of the compost cycle to confirm success of the heating process.

Following completion of the primary compost cycle, temperature loggers will be recovered and each pile will be mixed, sampled for analysis of survivability of PEDv at five locations, moisture will be added, and piles will be re-established for a secondary composting cycle with temperature loggers placed as previously described. At the completion of the secondary composting cycle, piles will again be sampled for analysis of survivability of PEDv (5 samples per pile) and temperature loggers will be recovered.

PEDv survivability will be determined via two independent assay methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a rapid and sensitive method that will be used to quantify the amount of virus RNA genome in the samples. The Nebraska Veterinary Diagnostic Center currently has a validated RT-qPCR test to assay for the presence of PEDv in manure sample matrices. To validate results from the RT-qPCR in laboratory assays, sawdust simulated compost matrix will be spiked with known concentrations of PEDv target RNA and compared to known standards to ensure no inhibition is present and that proper extraction methods are being used. An alternative method using virus isolation will also be conducted to determine whether viable virus is present in flasks at a smaller subset of time points. To do this, Vero cell monolayers will be infected with filter sterilized aliquots of compost exudate, blindly passaged once after seven days, and examined for virus p resence using IFA with a PED specific monoclonal antibody. At specific time points, RT-qPCR Ct values and Virus Isolation will be run in parallel to ensure sensitivity of testing and to evaluate correlation of the testing modalities under the simulated testing conditions and matrices. If these testing methods show agreement, and/or no virus is isolated, RT-qPCR testing will be utilized to facilitate rapid and consistent assessment of virus persistence during the majority of experimental time points.

What have we learned?

Biosecurity is essential to controlling the spread of PEDv and any facility that is currently positive for PEDv should work diligently to prevent contamination of neighboring facilities. Vehicle transport has been shown as a high-risk activity that may facilitate spread of PEDv (Lowe 2014) and mortalities that are positive for PEDv may be rejected by renderers to protect them from liability for transmitting the disease. Burial of mortalities can be detrimental to water quality (Bartelt-Hunt et al., 2013) and it is unknown how long the PEDv can remain active in the cool, dark, moist environment that accompanies land burial of carcasses, but extrapolation of available data suggests virus may persist for months. Therefore, we believe composting is likely to provide an effective, biosecure, economically viable and environmentally compatible option for disposal of PEDv mortalities. This research will validate the effectiveness of composting through controlled mortality composting trials subsequent to experimental infections. With the completion of this research, our expectation is that we will know what operating parameters are required to ensure inactivation of PEDv during composting of PEDv mortalities.

Future Plans

Using the information generated from this research, we will deliver extension programming and outreach materials to swine producers, veterinarians, and stakeholders within and beyond Nebraska to promote biosecure disposal of PEDv-infected mortalities.

Authors

Amy Millmier Schmidt, Assistant Professor and Livestock Bioenvironmental Engineer, University of Nebraska – Lincoln aschmidt@unl.edu

J. Dustin Loy, Assistant Professor, Veterinary & Biomedical Sciences, University of Nebraska – Lincoln

Additional information

Dr. Amy Millmier Schmidt
(402) 472-0877
aschmidt@unl.edu

Acknowledgements

The authors would like to acknowledge the Nebraska Pork Producers Association and the National Pork Board for providing funding for this research. Special thanks to Jared Korth for helping with laboratory activities on this project and construction of mortality composting platforms.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Time-Temperature Combinations for Destruction of PEDv During Composting


*Purpose

The purpose of this project was to determine the appropriate time-temperature combinations required for inactivation of the porcine epidemic diarrhea virus (PEDv) in composting material as a basis for evaluation of composting for disposal of swine mortalities and/or other PEDv-positive biological material.

What did we do?

In vitro propagation of PEDv for laboratory survivability assays was conducted using a cell culture-adapted isolate received from APHIS-NVSL (Ames, IA) that was free of extraneous agents (5th passage Colorado 2013 PEDv 1303). Propagation was conducted by infection of confluent VERO cell monolayers at a multiplicity of infection (MOI) of 0.1 with a concentration of 5 µg/mL TPCK trypsin. Virus stocks were be amplified following a 2-4 day incubation period on cell monolayers, frozen and thawed, centrifuged, and culture supernatants containing virus were harvested. Virus concentration was calculated and standardized to 1×105-1×106 TCID50/mL using immunocytochemistry and indirect fluorescent antibody assay (IFA) using a PEDV specific mouse monoclonal antibody (MedGene Labs).

The effect of temperature on survivability of PEDv in compost material was evaluated by inoculating compost material and subjecting the material to temperatures of 50°C (122°F), 55°C (131°F), 60°C (140°F), 65°C (149°F), and 70°C (158°F) for 0, 24, 48, 72, 96 h, and 120 h. Sawdust was acquired from a commercial source, autoclaved to eliminate existing microbes, oven dried and used to simulate compost material. One gram of prepared sawdust was placed in each of 140 1-mL centrifuge tubes. Cell culture supernatant containing infectious PEDv was added to phosphate buffered saline and added to each tube achieve a moisture content of 50% w.b. Tubes were randomly assigned to laboratory incubators at the five temperature treatment levels. At each sampling point, four tubes were removed from each incubator and tested to determine virus survivability.

PEDv survivability was determined via two independent assay methods. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is a rapid and sensitive method that was used by the Nebraska Veterinary Diagnostic Center to quantify the amount of virus RNA genome in the samples. To validate results from the RT-qPCR in laboratory assays, sawdust simulated compost matrix was spiked with known concentrations of PEDv target RNA and compared to known standards to ensure no inhibition was present and that proper extraction methods were being used. An alternative method using virus isolation was also conducted to determine whether viable virus was present in tubes at a smaller subset of time points. To do this, Vero cell monolayers were infected with filter sterilized aliquots of compost exudate, blindly passaged once after seven days, and examined for virus presence using IFA with a PED specific monoclonal antibody. At specific time points, RT-qPCR Ct values and Virus Isolation were run in parallel to ensure sensitivity of testing and to evaluate correlation of the testing modalities under the simulated testing conditions and matrices.

What have we learned?

At the time of proceedings submission, results were not available for inclusion in this report. Results will be presented during the scheduled oral seminar at the conference.

Results of this laboratory study will be used to evaluate appropriate time-temperature combinations necessary during swine mortality composting to inactivate the PEDv virus and determine the feasibility of on-farm mortality composting as a biosecure disposal method for PEDv-infected pigs. Following this laboratory study, mortality composting was initiated using PEDv-positive piglets to confirm the inactivation of PEDv during composting.

Future Plans

Results of this and the full-scale composting study will be used to recommend appropriate swine mortality disposal methods for swine producers with losses due to PEDv as part of their farm biosecurity plan. Additional swine enteric corornaviruses will likely be studied to confirm similar requirements for disposal of mortalities caused by these viruses.

Authors

Amy Millmier Schmidt, Assistant Professor and Livestock Bioenvironmental Engineer, University of Nebraska – Lincoln aschmidt@unl.edu

J. Dustin Loy, Assistant Professor, Clayton Kelling, Professor, Judith Galeota, Virology Laboratory Manager, and Sarah Vitosh, Graduate Research Assistant, Veterinary & Biomedical Sciences, University of Nebraska – Lincoln

Additional information

Dr. Amy Millmier Schmidt
(402) 472-0877
aschmidt@unl.edu

Acknowledgements

The authors would like to acknowledge the Nebraska Pork Producers Association and the National Pork Board for providing funding for this research. Special thanks to Jared Korth for helping with laboratory activities on this project.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Impact of Aerosols on Respiratory Health of Dairy Workers and Residents Living Near Dairies – Discussion and Implications of Recent Research

Recent studies of large modern dairies have found that respiratory disease remains an important problem for dairy workers, contributing to lost time and high turnover.   Exposure to high levels of organic dusts generated during milking, moving cows, feeding and other tasks has been associated with increased inflammation and decreased lung function resulting in chronic obstructive pulmonary disease (COPD) and asthma-like diseases.   Much research into the cause of respiratory disease in agriculture has focused on the role of endotoxins – a chemical component of Gram-negative bacteria.  Recent research suggests that other components of these dusts such as Gram-positive bacteria and fungi are also important.  Many new workers adapt to these exposures, and new evidence suggests that individual behavior and genetic factors play a key role in explaining why some workers are more susceptible.  In addition several new studies of communities living in the vicinity of dairies and other livestock operations have shown that low level exposure to bioaerosols containing endotoxins and other microbial components at a very young age may be protective against the development of asthma later in life, possibly through priming of the immune system.   Dairy producers are faced with interpreting complex research that may appear to show conflicting results.  This presentation will review and discuss research into the impact of aerosols on respiratory health of dairy workers and residents living near dairies – the findings and implications for dairy producers.

Authors

Reynolds, Stephen Stephen.Reynolds@Colostate.edu Colorado State University, High Plains Intermountain Center for Agricultural Health and Safety  

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date. 

University and Anaerobic Digestion Industry Partnerships – Laboratory Testing

The anaerobic digestion (AD) industry often is in need of laboratory testing to assist them with issues related to project development, digester performance and operation, and co-digestion incorporation. This presentation will highlight laboratory procedures that can be carried out through a University partnership, including biochemical methane productivity (BMP), specific methane activity assays (SMA), anaerobic toxicity assays (ATA), solids, nutrient and elemental proximate analysis for inputs, outputs and co-products, as well as a host of other activities. The presentation will illustrate the lessons that can be learned from the results of these tests, using real-life examples of testing already completed for industry partners.

Why Provide Guidance on Laboratory Testing for Anaerobic Digestion?

Laboratory testing allows characterization of anaerobic digestion (AD) inputs, outputs, and process stability. Testing can be carried out within AD industry laboratories, and they can also be carried out through partnerships with active AD research laboratories at academic institutions. The purpose of this project was to provide a document that summarizes common laboratory procedures that are used to evaluate AD influents, effluents, and process stability and to illustrate real-life examples of laboratory test results.

What did we do? 

The overview of common laboratory procedures was written based on the need to introduce third-party AD developers and government agencies to evaluating AD outputs and process stability. The authors are practiced at performing AD laboratory tests and have expertise and valuable information concerning these types of evaluations. Following a description of each test, we included the purpose of the test and an example of how the test results can be interpreted.

What have we learned? 

Laboratory testing of AD samples is performed to determine the concentration of certain constituents such as organic carbon, volatile fatty acids, ammonia-N, organic-N, phosphorus, and methane. Contaminants can be tested for such as fecal coliform indicator pathogens, pesticides, and pharmaceuticals. Understanding the concentration of specific constituents enables informed decisions to be made about appropriate effluent management.

Biochemical methane potential (BMP) and specific methanogenic activity (SMA) tests are used to estimate the biogas and methane that can be produced from an organic waste or wastewater during AD. These tests are often used by industry during the design phase to predict total biogas output, allowing for correct sizing of engines and estimation of potential revenue.

Anaerobic toxicity assays (ATAs) test the effect of different materials on biogas production. Unknown inhibitors may reside within new feedstock materials which can lead to an unanticipated reduction in digester performance, so it is important to use ATAs to test the effect of new feedstock material on the AD system before it is used. A common example is when energy-rich organic materials are added to a digester that practices co-digestion.

Future Plans 

Future plans are to prepare an extension fact sheet about the basics of anaerobic digestion effluents and processes, including the overview of common laboratory testing used to evaluate AD influents, effluents, and process stability.

Authors

Shannon Mitchell, Post-doctoral Research Associate at Washington State University shannon.mitchell@email.wsu.edu

Jingwei Ma, Post-doctoral Research Associate at Washington State University

Liang Yu, Post-doctoral Research Associate at Washington State University

Quanbao Zhao, Post-doctoral Research Associate at Washington State University

Craig Frear, Assistant Professor at Washington State University

Additional information 

Craig Frear, PhD

Assistant Professor

Center for Sustaining Agriculture and Natural Resources

Department of Biological Systems Engineering

Washington State University

PO Box 646120

Pullman WA 99164-6120

208-413-1180 (cell)

509-335-0194 (office)

cfrear@wsu.edu

www.csanr.wsu.edu

Acknowledgements

This research was supported by funding from USDA National Institute of Food and Agriculture, Contract #2012-6800219814; and by Biomass Research Funds from the WSU Agricultural Research Center.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Low-Power Aerators Combined with Center Pivot Manure Application at a Northeast Nebraska Hog Finishing Facility Created an Easy to Manage, Turn-Key System

trnkey animal waste management systemApplying livestock manure from lagoon storage through center pivot irrigation has long been considered a low-labor, uniform method of application that can deliver nutrients in-season to a growing crop. Three challenges with this system have been odor, pivot nozzle clogging and loss of nitrogen. A new innovation in lagoon treatment addresses these challenges. Low-power circulators were installed at a Northeast Nebraska commercial hog finishing facility and used to aerate the lagoon by moving oxygen-rich water and beneficial microbes to the bottom of the lagoon, reducing odor and potent greenhouse gases while lowering disease pathogen risk. This process preserved nitrogen and made it 40-60% more available in the first year of application. Circulation also reduced lagoon solids and bottom sludge, resulting in reduced agitation and dredging expense. Having a continuously well-mixed lagoon facilitated accurate manure nutrient sampling and consistent nutrient concentration delivery to the irrigation system. Combined with the ease of calibration of the center pivots, precision uniform nutrient application was achieved. Center pivot application had several additional advantages over tractor-based systems: less soil compaction, optimal nutrient timing during plant growth, higher uniformity, lower labor and energy costs, and eliminating impact on public roads. The circulators combined with flush barns and center pivot irrigation creates a complete turn-key manure management system.

Do Circulators Make a Difference in Liquid Manure Storage?

pumping nutrients from lagoon on korus pig siteThe purpose of the project was to evaluate the effectiveness of low powered circulators to treat livestock waste in lagoons. The objective was to evaluate how the addition of circulators to a livestock pond would change: 1. Odor levels, 2. Pivot nozzle clogging problems, and 3. Nitrogen loss.

What did we do?

A demonstration was conducted by installing five circulators on a lagoon receiving manure from a 3000 pig finisher facility. The lagoon is owned by a Lindsay customer that was already pumping the top water from the pond through pivots, but was having difficulty with plugging nozzles and was hiring a commercial pumper to agitate and pump solids. The circulators were installed in May of 2013. Starting with the day of installation and each month after through November 2013, effluent lab samples were collected, photos of the pond and effluent were taken, and odor level estimated.

comparison of manure application systems

report from Korus farm
table of report from Korus farms

The effluent was pumped through pivots where odor and nozzle clogging problems were evaluated on August 15th and December 2nd of 2013. The pond was refilled with fresh water, circulated for a few days, and re-pumped right after the August 15th event so more of the nutrients could be utilized by the crops.

What have we learned?

The benefits of using aerobic lagoons with livestock waste have been known for many years. The challenge has been finding a cost effective and reliable method to facilitate the process. The cost to run all five circulators was about $3300 per year figuring $0.10 per kWh.

The circulators facilitated the following changes in the pond:

  • Reduced dry matter in effluent to <0.4%-starting at 0.57% and ending at 0.37%
  • Greatly reduced hog hair and soybean hulls caught in the filter resulting in virtually eliminating nozzle and pressure regulator clogging on the pivot
  • Reduced solids and bottom sludge-sonar indicated a 5+ ft reduction in bottom solids in 5 months
  • Doubled 1st year availability of nitrogen-%NH4 to total N was >80% compared to average book values of 40%
  • Greatly reduced offensive manure odor-downwind from pivot applying effluent, very little odor was observed
  • Reduced disease pathogens-Total Coliform went 11,000 to 30 CFU/g & Escherichia coli went from 460 to <10 CFU/g
  • Reduced flies-virtually eliminated floating solids and fly habitat on the pond
  • Reduced severe greenhouse gasses (GHGs)
  • Generated safer and lower odor water to recycled back through the barn for manure removal

Future Plans

We would like to continue evaluating the system for more precise odor reduction ratings, nitrogen preservation during pond storage, and affect on disease pathogens.

Author

Steve Melvin, Irrigation Applications Specialist, Lindsay steve.melvin@lindsay.com

Additional information

Call Steve Melvin at 402-829 6815 for additional information.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.