Nutrient Circularity for Sustainability in Beef Supply Chains: Comparing the Performance of Three Manureshed Approaches

Purpose

Figure 1. Geography of grazing cattle, hay production, and the Corn Belt – major components of the U.S. and Canadian beef supply chains. The grazing systems that send cattle to feedlots and could potentially use surplus feedlot manure instead of fertilizer for hay production are symbolized with blue shading and brown boundary lines. A geographic unit in the 0-5000 range may represent a US county or Canadian Consolidated Census Unit with no data available.

Expectations of the beef industry are multiplying as communities seek to build sustainable agri-food systems for the long term. Nutrient circularity – recovering nutrients from manures and post-harvest byproducts and reusing them for agricultural production – is a promising yet complex strategy for achieving sustainability goals from grazing pasture to dinner plate. In the United States and Canada, flows of cattle from land-based systems to feedlots in the built environment provide opportunities for circular management, in which concentrated feedlot manure is cycled back onto either corn fed to cattle in the feedlot phase or the hay fed to grazing cattle in “earlier” links of the cattle supply chain. However, such flows can span great distances because feedlots that produce large volumes of manure tend to be concentrated in particular regions, but the Corn Belt that could use much of their nutrient loads is in the Upper Midwest and the hay-grazing systems that send cattle to feedlots are widely distributed (Figure 1).

Systematically recycling manure from concentrated feedlots back to the land-based systems where cattle originated can help the US and Canadian beef industries meet their goals, but such efforts would require initial investments to transform management practices, trade structures, and social networks. With these major societal investments at stake, a reliable understanding of the tradeoffs of various approaches is needed. In turn understanding tradeoffs requires reliable data about geographically-specific flows coupled with expertise from multiple disciplines to interpret the data. Yet this sort of knowledge is rare. We sought to help fill this knowledge gap by comparing three manure recycling strategies using the conceptual framework of the ”manureshed” – the lands where surplus manure nutrients from concentrated animal feeding sites can be recycled to meet production, environmental, and socio-economic goals.

What Did We Do

We used a diversity of data — agricultural censuses, interviews of manure managers, and nutrient concentrations in manure and crops at multiple scales — to estimate the environmental and socio-economic performance of three different manureshed management approaches with different degrees of nutrient circularity:

Figure 2. Three types of manuresheds explored in our analysis
    1. Local recycling where surplus manure from individual feedlots is transported to nearby crop farms within local networks, with little coordination or incentive from the beef industry or public programs (Figure 2a);
    2. Regional-scale recycling where surplus manure nutrients from a major beef-feeding hotspot (many feedlots close to each other) are distributed onto croplands of adjacent nutrient “sink” counties that could use the nutrients for crop production, in a systematic fashion supported by community and programmatic coordination (Figure 2b);
    3. National- or international-scale recycling where surplus manure from individual feedlots is transported back to the hay-grazing systems where cattle in the feedlots originated (as envisioned in Purpose above), with systematic coordination among links of the geographically extensive beef supply chain (Figure 2c). We used New Mexico, Florida, and western Canada as three “cattle origination areas” (Figure 1).

To illuminate the tradeoffs of the three manureshed approaches, we “scored” each in terms of their performance regarding goals in five domains of sustainability. We used input from literature reviews, interviews of manure managers, and knowledge of the complex structure of the North American beef supply chain. With each domain, we identified the investments needed to overcome the shortcomings in scores, as appropriate.

What Have We Learned

The manureshed concept helps stakeholders to weigh pros and cons of different management and policy approaches to nutrient circularity, because the concept can highlight the many barriers that must be removed for manure export from feeding sites to be sustainable. The concept also provides spatially explicit information and knowledge about where and how such recycling would actually work.

All three manureshed management approaches promote a form of nutrient circularity. The international, extensive approach (Figure 2c) was explicitly designed to cycle nutrients between feedlots and land-based systems of cattle production, but the other two also granted some circularity to the general agri-food system – especially when manure nutrients are prioritized to be spread on farms that supply part of the feed ration to nearby feedlots. For context, the top feedlots of the US import around 35% of their feed from local sources.

The three approaches “scored” differently with respect to goals in five domains of sustainability, resulting in different shapes of tradeoffs among environmental and socioeconomic goals for each approach (Figure 3). Importantly, these scores reflect the performance of the three management systems in the current agri-food system. If we, as a society, seek to promote nutrient circularity and its potential benefits in the future, alternatives such as the international approach – which seem economically infeasible now – may ultimately prove to be the most favorable, all things considered. The expense of transporting manure from beef feedlots to productive hayfields telecoupled to feedlots is now a major barrier to this approach (low score in Economic domain in Figure 3). However, redesigning systems so that hay-grazing agroecosystems receive feedlot manure may ultimately improve overall adaptive capacity during times of drought, reducing instances of herd destocking when appropriate and supporting the working landscapes valued by North Americans now and in the future (not pictured on Figure 3).

Figure 3. Performance of three approaches to beef manureshed management in the current agri-food system, with respect to one goal in each of five domains of sustainability. High scores are represented on the outer edges of the diagram. Comparing scores within and among approaches illustrates tradeoffs and co-benefits among the domains.

 

Future Plans

We plan to conduct a full life cycle analysis of the three manureshed approaches, with attention to environmental, productivity, and economic outcomes, including the role of manures in emerging Carbon markets. We plan to conduct the assessments within current and projected future conditions of the agri-food system, with special attention to future scenarios of climate change and rock-based Phosphorus scarcity.

We will also encourage collaborative science and management. Effective nutrient circularity for sustainability requires coordinated, comprehensive collaborations and partnerships across systems that are sometimes located far apart, beyond any one producer, consumer, or policy maker. To understand our options, a wealth of data, information, and knowledge is needed, especially that which prioritizes co-production among researchers, practitioners, and agri-food consumers.

Authors

Sheri Spiegal, Range Management Specialist, USDA-ARS Range Management Research Unit
sheri.spiegal@usda.gov

Additional Authors

    • Gwendwr Meredith, Social-Ecological Rangeland Scientist, University of Nebraska
    • Shabtai Bittman, Research Scientist, Agriculture and AgriFood Canada
    • Maria Silveira, Professor, Soil Fertility and Water Quality, Range Cattle Research Experiment Station, University of Florida
    • JV Vendramini, Professor of Agronomy & Forage Specialist, Range Cattle Research Experiment Station, University of Florida
    • C Alan Rotz, Agricultural Engineer, USDA-ARS-Pasture Systems and Watershed Management Research Unit
    • K Colton Flynn, Soil Scientist, USDA-ARS Grassland Soil and Water Research Laboratory
    • Mark Boggess, Center Director, USDA-ARS U.S. Meat Animal Research Center
    • Peter JA Kleinman, Soil Scientist and Research Leader, USDA-ARS, Soil Management and Sugar Beet Research Unit

Additional Information

Meredith, G., S. Spiegal, and P. Kleinman. 2022. Manure Cycling Interview Data ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/c9dabfc6b9185c127cf2f5f719a6fb69 (Accessed 2022-03-05).

Rockefeller Foundation. 2021. True Cost of Food Measuring What Matters to Transform the U.S. Food System. https://www.rockefellerfoundation.org/report/true-cost-of-food-measuring-what-matters-to-transform-the-u-s-food-system/

Spiegal, S., J. Vendramini, S. Bittman, M. Silveira, C. Gifford, C. Rotz, J. Ragosta, and P. Kleinman. 2022. Data to explore circular manureshed management in beef supply chains of the United States and western Canada ver 3. Environmental Data Initiative. https://doi.org/10.6073/pasta/a81b6a2dd23a8b12360412c492fe8040 (Accessed 2022-03-05).

https://www.ars.usda.gov/oc/dof/from-problem-to-solution-recycling-manure-to-help-crops/

Acknowledgements

This research was a contribution from the Long-Term Agroecosystem Research (LTAR) network. LTAR is supported by the United States Department of Agriculture, which is an equal opportunity provider and employer. Additional support for this effort was from USDA-NIFA AFRI’s Sustainable Southwest Beef Coordinated Agricultural Project grant #12726269. We thank AAFC and Canadian Cattlemen’s Association (CANFAX), New Mexico Livestock Board, and Florida Department of Agriculture and Consumer Services for their data and assistance.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.

Poultry Mortality Freezer Units: Better BMP, Better Biosecurity, Better Bottom Line.

Proceedings Home | W2W Home w2w17 logo

Purpose

Why Tackle Mortality Management?  It’s Ripe for Revolution.

The poultry industry has enjoyed a long run of technological and scientific advancements that have led to improvements in quality and efficiency.  To ensure its hard-won prosperity continues into the future, the industry has rightly shifted its focus to sustainability.  For example, much money and effort has been expended on developing better management methods and alternative uses/destinations for poultry litter.

In contrast, little effort or money has been expended to improve routine mortality management – arguably one of the most critical aspects of every poultry operation.  In many poultry producing areas of the country, mortality management methods have not changed in decades – not since the industry was forced to shift from the longstanding practice of pit burial.  Often that shift was to composting (with mixed results at best).  For several reasons – improved biosecurity being the most important/immediate – it’s time that the industry shift again.

The shift, however, doesn’t require reinventing the wheel, i.e., mortality management can be revolutionized without developing anything revolutionary.  In fact, the mortality management practice of the future owes its existence in part to a technology that was patented exactly 20 years ago by Tyson Foods – large freezer containers designed for storing routine/daily mortality on each individual farm until the containers are later emptied and the material is hauled off the farm for disposal.

Despite having been around for two decades, the practice of using on-farm freezer units has received almost no attention.  Little has been done to promote the practice or to study or improve on the original concept, which is a shame given the increasing focus on two of its biggest advantages – biosecurity and nutrient management.

Dusting off this old BMP for a closer look has been the focus of our work – and with promising results.  The benefits of hitting the reset button on this practice couldn’t be more clear:

  1. Greatly improved biosecurity for the individual grower when compared to traditional composting;
  2. Improved biosecurity for the entire industry as more individual farms switch from composting to freezing, reducing the likelihood of wider outbreaks;
  3. Reduced operational costs for the individual poultry farm as compared to more labor-intensive practices, such as composting;
  4. Greatly reduced environmental impact as compared to other BMPs that require land application as a second step, including composting, bio-digestion and incineration; and
  5. Improved quality of life for the grower, the grower’s family and the grower’s neighbors when compared to other BMPs, such as composting and incineration.

What Did We Do?

We basically took a fresh look at all aspects of this “old” BMP, and shared our findings with various audiences.

That work included:

  1. Direct testing with our own equipment on our own poultry farm regarding
    1. Farm visitation by animals and other disease vectors,
    2. Freezer unit capacity,
    3. Power consumption, and
    4. Operational/maintenance aspects;
  2. Field trials on two pilot project farms over two years regarding
    1. Freezer unit capacity
    2. Quality of life issues for growers and neighbors,
    3. Farm visitation by animals and other disease vectors,
    4. Operational and collection/hauling aspects;
  3. Performing literature reviews and interviews regarding
    1. Farm visitation by animals and other disease vectors
    2. Pathogen/disease transmission,
    3. Biosecurity measures
    4. Nutrient management comparisons
    5. Quality of life issues for growers and neighbors
  4. Ensuring the results of the above topics/tests were communicated to
    1. Growers
    2. Integrators
    3. Legislators
    4. Environmental groups
    5. Funding agencies (state and federal)
    6. Veterinary agencies (state and federal)

What Have We Learned?

The breadth of the work at times limited the depth of any one topic’s exploration, but here is an overview of our findings:

  1. Direct testing with our own equipment on our own poultry farm regarding
    1. Farm visitation by animals and other disease vectors
      1. Farm visitation by scavenger animals, including buzzards/vultures, raccoons, foxes and feral cats, that previously dined in the composting shed daily slowly decreased and then stopped entirely about three weeks after the farm converted to freezer units.
      2. The fly population was dramatically reduced after the farm converted from composting to freezer units.  [Reduction was estimated at 80%-90%.]
    2. Freezer unit capacity
      1. The test units were carefully filled on a daily basis to replicate the size and amount of deadstock generated over the course of a full farm’s grow-out cycle.
      2. The capacity tests were repeated over several flocks to ensure we had accurate numbers for creating a capacity calculator/matrix, which has since been adopted by the USDA’s Natural Resources Conservation Service to determine the correct number of units per farm based on flock size and finish bird weight (or number of grow-out days) in connection with the agency’s cost-share program.
    3. Power consumption
      1. Power consumption was recorded daily over several flocks and under several conditions, e.g., during all four seasons and under cover versus outside and unprotected from the elements.
      2. Energy costs were higher for uncovered units and obviously varied depending on the season, but the average cost to power one unit is only 90 cents a day.  The total cost of power for the average farm (all four units) is only $92 per flock.  (See additional information for supporting documentation and charts.)
    4. Operational/maintenance aspects;
      1. It was determined that the benefits of installing the units under cover (e.g., inside a small shed or retrofitted bin composter) with a winch system to assist with emptying the units greatly outweighed the additional infrastructure costs.
      2. This greatly reduced wear and tear on the freezer component of the system during emptying, eliminated clogging of the removable filter component, as well as provided enhanced access to the unit for periodic cleaning/maintenance by a refrigeration professional.
  2. Field trials on two pilot project farms over two years regarding
    1. Freezer unit capacity
      1. After tracking two years of full farm collection/hauling data, we were able to increase the per unit capacity number in the calculator/matrix from 1,500 lbs. to 1,800 lbs., thereby reducing the number of units required per farm to satisfy that farm’s capacity needs.
    2. Quality of life issues for growers and neighbors
      1. Both farms reported improved quality of life, largely thanks to the elimination or reduction of animals, insects and smells associated with composting.
    3. Farm visitation by animals and other disease vectors
      1. Both farms reported elimination or reduction of the scavenging animals and disease-carrying insects commonly associated with composting.
    4. Operational and collection/hauling aspects
      1. With the benefit of two years of actual use in the field, we entirely re-designed the sheds used for housing the freezer units.
      2. The biggest improvements were created by turning the units so they faced each other rather than all lined up side-by-side facing outward.  (See additional information for supporting documentation and diagrams.)  This change then meant that the grower went inside the shed (and out of the elements) to load the units.  This change also provided direct access to the fork pockets, allowing for quicker emptying and replacement with a forklift.
  3. Performing literature reviews and interviews regarding
    1. Farm visitation by animals and other disease vectors
      1. More research confirming the connection between farm visitation by scavenger animals and the use of composting was recently published by the USDA National Wildlife Research Center:
        1. “Certain wildlife species may become habituated to anthropogenically modified habitats, especially those associated with abundant food resources.  Such behavior, at least in the context of multiple farms, could facilitate the movement of IAV from farm to farm if a mammal were to become infected at one farm and then travel to a second location.  …  As such, the potential intrusion of select peridomestic mammals into poultry facilities should be accounted for in biosecurity plans.”
        2. Root, J. J. et al. When fur and feather occur together: interclass transmission of avian influenza A virus from mammals to birds through common resources. Sci. Rep. 5, 14354; doi:10.1038/ srep14354 (2015) at page 6 (internal citations omitted; emphasis added).
    2. Pathogen/disease transmission,
      1. Animals and insects have long been known to be carriers of dozens of pathogens harmful to poultry – and to people.  Recently, however, the USDA National Wildlife Research Center demonstrated conclusively that mammals are not only carriers – they also can transmit avian influenza virus to birds.
        1. The study’s conclusion is particularly troubling given the number and variety of mammals and other animals that routinely visit composting sheds as demonstrated by our research using a game camera.  These same animals also routinely visit nearby waterways and other poultry farms increasing the likelihood of cross-contamination, as explained in this the video titled Farm Freezer Biosecurity Benefits.
        2. “When wildlife and poultry interact and both can carry and spread a potentially damaging agricultural pathogen, it’s cause for concern,” said research wildlife biologist Dr. Jeff Root, one of several researchers from the National Wildlife Research Center, part of the USDA-APHIS Wildlife Services program, studying the role wild mammals may play in the spread of avian influenza viruses.
    3. Biosecurity measures
      1. Every day the grower collects routine mortality and stores it inside large freezer units. After the broiler flock is caught and processed, but before the next flock is started – i.e. when no live birds are present,  a customized truck and forklift empty the freezer units and hauls away the deadstock.  During this 10- to 20- day window between flocks biosecurity is relaxed and dozens of visitors (feed trucks, litter brokers, mortality collection) are on site in preparation for the next flock.
        1. “Access will change after a production cycle,” according to a biosecurity best practices document (enclosed) from Iowa State University. “Empty buildings are temporarily considered outside of the [protected area and even] the Line of Separation is temporarily removed because there are no birds in the barn.”
    4. Nutrient management comparisons
      1. Research provided by retired extension agent Bud Malone (enclosed) provided us with the opportunity to calculate nitrogen and phosphorous numbers for on-farm mortality, and therefore, the amount of those nutrients that can be diverted from land application through the use of freezer units instead of composting.
      2. The research (contained in an enclosed presentation) also provided a comparison of the cost-effectiveness of various nutrient management BMPs – and a finding that freezing and recycling is about 90% more efficient than the average of all other ag BMPs in reducing phosphorous.
    5. Quality of life issues for growers and neighbors
      1. Local and county governments in several states have been compiling a lot of research on the various approaches for ensuring farmers and their residential neighbors can coexist peacefully.
      2. Many of the complaints have focused on the unwanted scavenger animals, including buzzards/vultures, raccoons, foxes and feral cats, as well as the smells associated with composting.
      3. The concept of utilizing sealed freezer collection units to eliminate the smells and animals associated with composting is being considered by some government agencies as an alternative to instituting deeper and deeper setbacks from property lines, which make farming operations more difficult and costly.

Future Plans

We see more work on three fronts:

  • First, we’ll continue to do monitoring and testing locally so that we may add another year or two of data to the time frames utilized initially.
  • Second, we are actively working to develop new more profitable uses for the deadstock (alternatives to rendering) that could one day further reduce the cost of mortality management for the grower.
  • Lastly, as two of the biggest advantages of this practice – biosecurity and nutrient management – garner more attention nationwide, our hope would be to see more thorough university-level research into each of the otherwise disparate topics that we were forced to cobble together to develop a broad, initial understanding of this BMP.

Corresponding author (name, title, affiliation)

Victor Clark, Co-Founder & Vice President, Legal and Government Affairs, Farm Freezers LLC and Greener Solutions LLC

Corresponding author email address

victor@farmfreezers.com

Other Authors

Terry Baker, Co-Founder & President, Farm Freezers LLC and Greener Solutions LLC

Additional Information

https://rendermagazine.com/wp-content/uploads/2019/07/Render_Oct16.pdf

Farm Freezer Biosecurity Benefits

One Night in a Composting Shed

www.farmfreezers.com

Transmission Pathways

Avian flu conditions still evolving (editorial)

USDA NRCS Conservation fact sheet Poultry Freezers

Nature.com When fur and feather occur together: interclass transmission of avian influenza A virus from mammals to birds through common resources

How Does It Work? (on-farm freezing)

Influenza infections in wild raccoons (CDC)

Collection Shed Unit specifications

Collection Unit specifications

Freezing vs Composting for Biosecurity (Render magazine)

Manure and spent litter management: HPAI biosecurity (Iowa State University)

Acknowledgements

Bud Malone, retired University of Delaware Extension poultry specialist and owner of Malone Poultry Consulting

Bill Brown, University of Delaware Extension poultry specialist, poultry grower and Delmarva Poultry Industry board member

Delaware Department of Agriculture

Delaware Nutrient Management Commission

Delaware Office of the Natural Resources Conservation Service

Maryland Office of the Natural Resources Conservation Service

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

The North American Partnership for Phosphorus Sustainability: Creating a Circular P Economy as Part of a Sustainable Food System


Purpose           

To promote and foster the implementation of sustainable P solutions in both the private and public sectors

People standing in the formation of a 'P'What did we do? 

Recently, a team of Phosphorus researchers initiated the North American Partnership for Phosphorus Sustainability (NAPPS) with seed funding from Arizona State University. The goal of North American Partnership for Phosphorus Sustainability (NAPPS) is to actively engage stakeholders (e.g. corporations, national and local policy makers, planners and officials, representatives of agriculture, industry) to promote and foster the implementation of sustainable P solutions in both the private and public sectors. NAPPS seeks to engage partners in identifying key bottlenecks and strategies for decision-making, policy, and implementation of P efficiency and recycling technologies.

What have we learned? 

Phosphorus is necessary for life, and is essential for agricultural production, and so for food security. The growing world population, changing diets of humans to more meat and dairy and growing use of phosphate additives, and biomass production for energy or industrial uses result in an increasing need for phosphorus input, and the world is today heavily dependent on non-renewable, finite phosphate rock reserves that which are concentrated in a small number of countries, posing geopolitical vulnerability. These trends lead to the depletion of phosphate rock resources, pressure on and instability in phosphate prices, decreasing quality and increasing contaminant loads of remaining reserves, and unstable, insecure P supply for regions without local rock resources, especially in the developing world. At the same time, excess P is lost from the food system at multiple points. The result is eutrophication of freshwater and coastal ecosystems – lo ss of the amenity value of lakes and rivers as well as toxic algal blooms and impacts on fisheries.

Phosphorus stewardship is therefore essential, and we must use P more efficiently in the agri-food system, and actively develop phosphorus reuse and recycling technologies and practices. At the same time, the issue of contaminants, both in phosphate rock and in recycled phosphates must be addressed, as well as the need to reduce phosphate inputs to surface waters where these are problematic. We can reduce the use of mined P by producing and applying fertilizer from recycled sources. By using improved practices and smarter crops, we can reduce the demand for P fertilizer and reduce the runoff to surface water bodies. By reducing and re-using food waste and eating food with lower P footprints we can lower our phosphorus consumption and demand. Collectively, these will also lessen the impacts of P runoff on precious water resources.

Future Plans 

NAPPS activities and stakeholder recruitment will be organized around four main sectors: P Recycling; P Efficiency in Food Production; BioEnergy and Food Choice; and Water Quality. Projects and activities will be decided by the Board of Directors, but may include:

1. Develop a common vision for creating a sustainable P cycle in North America

2. Identifying and helping businesses and other organizations respond to opportunities offered by challenges in P management and emerging research in P sustainability

3. Building networks between different interest groups and sectors related to phosphorus management and recycling

4. Evaluating new P efficiency and recycling technologies, including feasibility, availability of suppliers, inventory of existing technologies and companies, cost/benefit analysis, and life cycle analyses

5. Fostering implementation of new technologies by improving the efficiency of business value chains

6. Assessing and facilitating regulatory development pertaining to phosphorus management, including waste, environmental, discharge, and agriculture to improve P sustainability

7. Representing North American phosphorus managers and innovators in international meetings and initiatives

8. Preparing funding RFPs for demonstration projects and integration and dissemination of new technologies and concepts

Authors

Helen Ivy Rowe, Assistant Research Professor, School of LIfe Sciences, Arizona State University hirowe@asu.edu

James J. Elser, Regents Professor, School of LIfe Sciences, Arizona State University

Additional information                

http://sustainablep.asu.edu

Acknowledgements      

We thank Arizona State University for providing funds to launch this initiative.

 

Logo for Sustainable Phosphorus Initiative

The Sustainable Phosphorus Initiative - farm, food, fertilizer

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.