Dairy Manure Digestion Influenced by Wasted Milk from Milking Operations

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Study Waste Milk in Anaerobic Digestion?

Anaerobic digestion has many advantages both environmentally and economically. First, it produces renewable energy in the form of methane, a renewable energy source, which leads to a steady increase in the number of anaerobic manure digesters in the United States. According to the report from the World Dairy Expo held in Madison, Wisconsin in 2009 (Expo’09, 2009), the US dairy industry is taking the lead in adopting anaerobic technology because the majority (over 75%) of operating US manure digesters is installed on dairy farms. It is anticipated that this trend will continue as the country has determined to reduce its reliance on ever diminishing fossil-based energy resources.

Second, the technology can significantly reduce the polluting strength of the treated waste materials, such as chemical oxygen demand (COD), thus ameliorating their pollution potential to the environment when discharged. Due to the nature of dairy operations, a tangible amount of milk coming from the milking parlor wastewater is often discharged to the bulk manure, which can dramatically increase the COD level of such waste streams. The high COD content (190,000 mg/L) of milk makes the common practice of land applying the milk contaminated manure dangerous due possibly to the potential of causing severe contamination of surface and ground waters from runoff and leaching. Such practice is therefore drawing increased scrutiny from the public and environmental regulatory agencies. Fortunately, with the number of dairy producers willing to adopt anaerobic digesters on their farms continuing to grow, the concern for such pollution could be tempered.

However, a remaining question of this remedy is whether the added milk has any impact on the overall digestion process in terms of biogas production and pollutants removal.

What Did We Do?

In this project, the overall response of co-digesting dairy manure with milk added at 7 different levels, i.e., 1, 3, 5, 7, 9, 14, and 19%, using lab-scale batch anaerobic digesters was investigated. The co-digestion performance was evaluated based on total biogas volume production, methane concentration, and its volume in the biogas generated. The changes and/or reductions in COD of the treated liquid were also presented.

What Have We Learned?

  1. Cumulative Biogas Production Affected by Different Milk Content

First, increasing milk content could increase the cumulative biogas production during the operation, with the total volume of biogas produced being 5260, 5790, 6300, 7010, 7480, 8960, and 10150 mL for the milk treatments of 1, 3, 5, 7, 9, 14, and 19%, respectively, as opposed to the control (4980 mL). Second, higher milk content could significantly raise the initial biogas production rate. Third, the presence of milk appeared to have some influence on the stability of the digestion process, as evidenced by the fluctuation of biogas production at high milk concentrations. For instance, the treatments having milk content up to 7% demonstrated a similar trend. But for milk content of 9, 14, and 19%, the fluctuation in biogas production volume became progressively conspicuous. Especially for the 19% milk treatment, the biogas volume produced first jumped from 190 mL at 6 hour to 1190 mL at 12 hour after the digestion started, followed by a relatively moderate production period before it jumped again after 8 days of digestion. Considering the results from this study, it may be concluded that milk can increase biogas production when co-digested with dairy manure.

  1. Cumulative CH4 Volumes Affected by Different Milk Content

The performance of different treatments in cumulative CH4 production indicates that adding milk to dairy manure digestion will promote the volumetric production of both biogas and methane. However, the CH4 content in the produced biogas deteriorated as the milk content increased (from 66.5% for the control to 63.5% for 19% milk treatment). It can thus be inferred that although the volumes of total biogas and methane were increased by increasing the milk content in the digester, the increase in methane volume was not in tandem with that in total biogas volume, implying that a significant amount of CO2 was concurrently produced. Apparently, the presence of milk in the digestion substrate is the only legitimate cause for the increasing production of CO2. In addition, although the effect of milk on lowering the CH4 content in biogas is observed for all milk treatments, the extent of such an effect is different. The milk impact on CH4 content in biogas was not significant for manure containing milk up to 3% (v/v), but it turned significant at 5%. Summarizing the above discussions leads to an intuitive suggestion that in order to avoid production of a substantial amount of CO2 due to the spilled milk in the digestion process, dairy producers should manage to control the milk content in the digester liquid ≤ 3%.

  1. COD, TKN, and C/N Ratio Changes in Digestates From the Digestion of Dairy Manure with Milk

The added milk substantially increased the digester content COD as the amount of milk increased. However, at the end of the experiment, the final COD concentration in most digester effluent samples reached a fairly similar level, suggesting that the digestion process for the majority of the treatments was completed properly. In addition, since all the experiments were run on the same time schedule, the COD degradation efficiency obviously increased with increasing milk addition from 49.7% for the control to 77.8% for the 19% milk treatment. The improved COD removal efficiency in company with the increasing milk content could be attributed to the gradually elevated C/N ratio due to the added milk (from 5.19 for the control to 10.7 for the 19% treatment) because it is recognized that the optimum C/N ratio for anaerobic digestion is around 20/1 to 30/1, which could explain the continuous increase in COD removal as the C/N ratio increased. At the end of experiment, the effluent C/N ratio averaged 2.75, which was very close to the value for the digested dairy manure (2.83). As for TKN, the removal efficiency is almost negligible, which is the typical behavior commonly observed for anaerobic digestion, indicating that the digestion operation was carried out successfully. Based on the information obtained from this study, it may be concluded that milk content up to 19% (v/v) in dairy manure may have little negative impact on COD removal efficiency in the anaerobic digestion process.

Future Plans

Two stage digestion process to produce hydrogen and methane may be studied with milk addition.

Authors

Jun Zhu, Professor, University of Minnesota, zhuxx034@umn.edu

Wu, X., Postdoc, University of Minnesota

Dong, C., Associate Professor, Zhejiang Gongshang University, Hangzhou, China

Yao, W., Postdoc, University of Kentucky

Additional Information

Wu, X., C. Dong, W. Yao, J. Zhu. 2011. Anaerobic digestion of dairy manure influenced by the wasted milk from milking operations. Journal of Dairy Science 94(8): 3778-3786.

Acknowledgements

The authors wish to thank the Minnesota Legislature Rapid Agricultural Response Fund for providing financial support to this project.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.