Antimicrobial Resistance From a One-Health Perspective: A Multi-Disciplinary University Instruction from Extension Professionals

Purpose

Contemporary issues faced by Extension professionals are often technically and politically complex, crossing a range of subjects, academic disciplines, and value systems. Addressing complex social issues to achieve desired impacts across disparate audiences requires collaborative efforts that engage multiple disciplines, represent unique geographic regions and cultural settings, and implement varying outreach methods. For example, antimicrobial resistance (AMR) is truly a “wicked problem” as it is global, complex, and difficult to solve. It is a “big picture” issue that must be addressed at multiple smaller scales where values, beliefs, cultural norms, and habits collide with science, innovation, public policy, and behavioral science, all forming a complicated intersection of separate, yet linked, continuous feedback loops.

The iAMResponsibleTM Project, is a nationwide extension program working on outreach and education on AMR within agriculture, food production, and food safety systems. In 2019, the team prioritized two approaches to promote cross-disciplinary collaborations on AMR research and increase AMR-related outreach to disparate audiences: a) greater engagement of graduate students in understanding AMR and the value of their area of study to approaching this issue from a One Health perspective; and b) improved science communication skills among graduate students. To that end, we proposed the development of a web-based, graduate-level university course to expand the impact of iAMResponsibleTM programming by engaging students in learning about the scientific, cultural, and political aspects of AMR across relevant disciplines.

The primary objectives in offering this novel, web-based university course that integrates research-based learning with science communication were to:

    1. Facilitate optimal distribution and utilization of research-based, AMR-related food safety information and resources at the state, regional and national levels among future and current food producers and consumers; and
    2. Develop AMR/Food Safety content to fill existing gaps or emerging areas of significant needs that are not being addressed regionally, nationally, and globally.

What Did We Do

Multi-university instruction

Spring 2020

A one-credit, graduate-level seminar course exploring U.S. and global challenges related to AMR in food systems, research-based strategies to mitigate potential risks associated with AMR, and successful methods of communicating this complicated scientific topic to food producers and consumers was first taught simultaneously at the University of Nebraska–Lincoln and the University of Maryland. Instructors on site at each participating institution facilitated listing of the course in their course catalog to allow students to enroll for credit at the university where they are studying. Each meeting of the class featured invited presentations by experts from across the U.S. sharing research, policy, and communication perspectives on AMR.

Spring 2021

Following the same format as the initial offering, the course was taught simultaneously at the University of Nebraska-Lincoln, University of Maryland, North Carolina State University, University of Minnesota, and Washington State University.

Based on experiences and student feedback from the 2020 and 2021 offerings of the course, lecture topics for the 2022 offering include:

Topic Presenter
Introduction to antibiotic resistance one-health Dr. Amy Schmidt, University of Nebraska – Lincoln and Dr. Stephanie Lansing, University of Maryland
Principles of extension programming and outreach Dr. Joe Harrison, Washington State University
First fully live session: Introduction to the course and student expectations All Instructors
Impact of AMR on medical practice and human health Dr. Rosa Helena Bustos – head of clinical pharmacology at Universidad de la Sabana
Challenge of AMR for animal health care Dr. Paul Morley, Texas A&M University
The natural occurrence and current state of the AMR challenge for environmental pollution Dr. Thomas Ducey (USDA-ARS)
Guided panel: Environmental mitigations for AMR Panelists: Carlton Poindexter, University of Maryland; Dr. John Schmidt, USDA-ARS; Dr. Shannon Bartelt-Hunt, University of Nebraska;

Moderators: Dr. Stephanie Lansing and Dr. Mahmoud Sharara

Intervention and tracing of AMR in the food supply Aaron Asmus – Hormel Foods

Julie Haendiges, US-FDA

History of public attitudes towards microbiology and what it tells us about how to approach AMR Dr. Kari Nixon, Whitworth University
Alternating Spring Break Class activity on identifying and evaluating science communication
Alternating Spring Break Class activity on identifying and evaluating science communication
Worldwide Implications of AMR Student led examination of AMR as it is experienced around the world
Challenges in development of antibiotics and alternatives for antibiotics Dr. Glenn Zhang, Oklahoma State University
How to assign risk to AMR found in non-clinical settings Dr. Bing Wang, University of Nebraska
Dead week workday – students work time. Submit reports and recorded presentations by the end of the workday on Friday, April 22. Zoom rooms will be available as needed. Led by Dr. Noelle Noyes
Final project review Student project Q&A sessions

Science Communication

As a joint offering by several extension faculty, this course was designed not only to cover the fundamentals of AMR but also as an opportunity to introduce STEM students to important skills and concepts used by extension professionals. As a part of this multi-institution collaboration, students worked together with their peers across the country to review and develop research-based resources and methods for communicating scientific information about AMR to non-academic audiences. These efforts were facilitated by the inclusion of lectures on extension principles and science communication, and team-based outreach projects, to support development of outreach and educational thinking and skill development within students in STEM fields. Moreover, content created by students through team projects that produced well-designed outreach content were intended for dissemination by the iAMResponsibleTM Project. The result was the production of outreach materials that transcended expertise represented by project team members.

Evaluation methods

Methods for evaluating the content and delivery of this course have been adjusted with each subsequent offering. During the first year an informal focus group discussion was conducted with students at the end of the term to solicit feedback and suggestions for future iterations. Throughout the second session (2021) students filled out weekly surveys following each lecture, as well as a survey assessment of the course. Instructors were also asked to evaluate the course content and delivery following the 2021 offering.

Students are evaluated on a combination of participation in the course discussion (during the lecture period or online following the lecture) and on evaluation of student projects. The student projects include a large emphasis on teams cooperating to identify a target audience for their shared topic, establishing a shared goal for their audience, and creating impactful outreach products to achieve their intended outcomes. Moreover, as a part of their participation and evaluation for this course, students are asked to review the effectiveness of their peers’ outreach products and the peer critiques are incorporated into the final student evaluation for the course.

What Have We Learned

Feedback from the students

Results from the student focus group in 2020 were highly influential on the expanded instruction for science communication strategies and addition of international emphasis on AMR discussions in subsequent years. Survey results following the second session again highlighted the value the students placed in the instruction on science communication, audience identification, and navigating public attitudes toward AMR, science, and disease. Student participation in Spring 2020 (two institutions) and 2021 (five institutions) totaled 28 students. Evaluations by students revealed the following outcomes:

Student comments included:

Student surveys also indicated that the logistical issues surrounding the expectation for students to work with colleagues cross-institutionally on class assignments was the most significant challenge encountered. Accordingly, the syllabus for the current (Spring 2022) offering allocates more discussion time during lectures for students to grow more comfortable with one another and provides the students with a cross-institutional work environment on Slack to facilitate discussion outside of class time. We await the student evaluations from 2022 to provide a more detailed understanding of how these changes will affect student experience but, after 4 weeks of the course, the average weekly participation on Slack is holding at about 70% of participants who regularly check-in, read, or respond to discussion on the platform.

Feedback from the instructors

The development and delivery of this course has had the unintended consequence of providing an opportunity for the instructors of the course to also continue to learn and engage on this dynamic topic. Following delivery of the course in 2021, instructors were asked to evaluate the course content and delivery method, revealing the following data:

Future Plans

Utilization of course materials outside of the course

Lectures, and student projects developed during the first two offerings of the course have been repurposed and made available for a wider audience through the LPELC platform, further linking extension and classroom educational goals and providing the students in the course the opportunity to develop materials for immediate practical application within the national extension community.

How to apply the lessons learned for other extension issues areas

We believe that the results of the students’ evaluations indicate that the next generation of STEM professionals not only values expertise in extension skills but will actively seek to develop those skills for themselves if given the opportunity. Accordingly, we see a value in pursuing similar courses as part of an extension portfolio.

How to assess the long-term impacts

We will also seek to engage former participants in this course in an assessment of how the training received, in systems thinking, multidisciplinary collaboration, and science communication have been effective in their professional work in subsequent years.

Authors

Amy Schmidt, Associate Professor, University of Nebraska – Lincoln
aschmidt@unl.edu

Mara Zelt, Research Technologist, University of Nebraska
Stephanie Lansing, Professor, University of Maryland
Rohan Tikekar, Associate Professor, University of Maryland
Mahmoud Sharara, Assistant Professor, North Carolina State University
Joe Harrison, Professor Emeritus, Washington State University
Noelle Noyes, Assistant Professor, University of Minnesota

Additional Information

Selected course materials are available through the LPELC website

Acknowledgements

Funding for the iAMR Project was provided by USDA-NIFA Award Nos. 2017-68003-26497, 2018-68003-27467 and 2018-68003-27545. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.

Selecting Preferred Land Application Sites: Extension Curricula for Interactive Land Application Education

preview of map in progress
The curricula contains a map where participants keep track of their progress visually as they work through the different activities.

An educational curricula was pilot tested in 2020 by Extension professionals in Nebraska and Minnesota. It utilizes a table-top sized map game board, six pre-planned scenarios, and interactive planning by small groups to select preferred manure application sites. The curricula addresses:

    • How far will I need to travel to manage manure nitrogen? Phosphorus?
    • Which fields benefit the most agronomically from manure?
    • How far can I afford to travel?
    • Which fields benefit most from manure’s soil health benefits?
    • What water quality risks are connected with individual fields?
    • How can I use a weather forecast to minimize neighbor’s odor risks?

These activities often lead to lots of peer-to-peer teaching. For example, we have witnessed discussions about minimizing compactions and planning to minimize impacts on community infrastructure and neighbors. As participants work through these discussions, they add their happy and sad face emojis to the map to weigh the benefits and concerns connected to individual fields.

Resources Available for Adapting to Your State

The curricula includes:

preview of factsheets and worksheets
Factsheets complement each activity’s main worksheet, helping the participants make their decision on which field is the best for manure application.
    • a 25-square mile map,
    • scenarios set up for six alternative animal feeding operations (you pick one for your group),
    • four alternative fields for land application with simplified information cards (soil tests, soil health tests, nutrient requirements, water quality risk indicators), and
    • worksheets and one-page information sheets for each of the six scenarios.

You may download electronic copies of all resources, adapt to your state, and begin sharing a highly interactive and peer-to-peer educational experience.

Downloadable Resources

Thank you for your interest in the curricula. Please fill out the following form to access the files:

Contacts

Leslie Johnson, Rick Koelsch and Amy Schmidt

Planning for Resilience: Using Scenarios to Address Potential Impacts of Climate Change for the Northern Plains Beef System

Proceedings Home W2W Home w2w17 logo

Purpose

Resiliency to weather extremes is a topic that Northern Plains farmers and ranchers are already familiar with, but now climate change is adding new uncertainties that make it difficult to know the best practices for the future. Scenario planning is a method of needs assessment that will allow Extension and beef system stakeholders to come together using the latest climate science to discover robust management options, highlight key uncertainties, prioritize Extension programming needs, and provide an open forum for discussion for this sometimes controversial topic.

Overall objectives:

1. Determine a suite of key future scenarios based on climate science that are plausible, divergent, relevant, and challenging to the beef industry.

2. Determine robust management options that address the key scenario drivers.

3. Develop a plan for Extension programming to address determined educational needs.

What did we do?

A team of researchers, Extension specialists, and educators was formed with members from University of Nebraska and South Dakota State University. They gathered the current research information on historical climate trends, projections in future climate for the region, and anticipated impacts to the beef industry. These were summarized in a series of white papers.

Three locations were selected to host two half day focus groups, representing the major production regions. A diverse group representing the beef industry of each region including feedlot managers, cow calf ranchers, diversified producers, veterinarians, bankers, NRCS personnel, and other allied industries. The first focus group started with a discussion of the participants past experiences with weather impacts. The team then provided short presentations starting with historic climate trends and projection, anticipated impacts, and uncertainties. The participants then combined critical climate drivers as axis in a 2×2 grids, each generating a set of four scenarios. They then listed impacts for each combination. The impacts boundaries were feed production through transporting finished cattle off-farm.

Project personnel then combined the results of all three locations to prioritize the top scenarios, which were turned into a series of graphics and narratives. The participants were then brought together for a second focus group to brainstorm management and technology options that producers were already implementing or might consider implementing. These were then sorted based on their effectiveness across multiple climate scenarios, or robustness. The options where also sorted by the readiness of the known information: Extension materials already available, research data available but few Extension materials, and research needed.

Graphic depicting warm/dry, warm/wet, cold/dry, cold/wet conditions on the farm during winter-spring

Graphic depicting hot/dry, hot/wet, cool/dry, cool/wet conditions on the farm during summer-fall

What have we learned?

The key climate drivers were consistent across all focus groups: temperature and precipitation, ranging from below average to above average. In order to best capture the impacts, the participants separated winter/spring and summer/fall.

This method of using focus groups as our initial interaction with producers on climate change was well received. Most all farmers love to talk about the weather, so discussing historical trends and their experiences with it as well as being upfront with the uncertainties in future projections, while emphasizing the need for proactive planning seemed to resonate.

With so many competing interests for producers’ time, as well as a new programming area, it was critical to have trusted local educators to invite participants. Getting participants to the second round of focus groups was also more difficult, so future efforts should considering hosting a single, full day focus group, or allowing the participants to set the date for the second focus group, providing more motivation to attend.

Future Plans

The scenarios and related management options will be used to develop and enhance Extension programming and resources as well as inform new research efforts. The goal is to provide a suite of robust management options and tools to help producers make better decisions for their operation.

Corresponding author, title, and affiliation

Crystal Powers, Extension Engineer, University of Nebraska – Lincoln

Corresponding author email

cpowers2@unl.edu

Other authors

Rick Stowell, Associate Professor at University of Nebraska – Lincoln

Additional information

Crystal Powers

402-472-0888

155 Chase Hall, East Campus

Lincoln, NE 68583

Acknowledgements

Thank you to the project team:

University of Nebraska – Lincoln: Troy Walz, Daren Redfearn, Tyler Williams, Al Dutcher, Larry Howard, Steve Hu, Matthew Luebbe, Galen Erickson, Tonya Haigh

South Dakota State University: Erin Cortus, Joseph Darrington,

This project was supported by the USDA Northern Plains Regional Climate Hub and Agricultural and Food Research Initiative Competitive Grant No. 2011-67003-30206 from the USDA National Institute of Food and Agriculture.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Talking Climate with Animal Agriculture Advisers


Proceedings Home W2W Home w2w17 logo

Purpose             

The Animal Agriculture in a Changing Climate (AACC) project was established to leverage limited Extension expertise across the country in climate change mitigation and adaptation, with the goal of building capacity among Extension professionals and other livestock advisers to address climate change issues.

What did we do? 

The Animal Agriculture in a Changing Climate project team created a suite of educational programs and products to build capacity across the United States. Key products of the project:

  • Online courses: 363 participants registered with a 35% completion rate (Whitefield et al., JOE, 2016)
  • National and regional symposia and workshops: 11 face-to-face conferences with approximately 1,350 attendees.
  • Website: Over 5,900 users with over 21,100 total views. Project videos have received nearly 8,900 views.
  • Social media: AACC weekly blog (990 subscribers); daily Southeast Climate Blog (38,506 site visits); regional newsletters (627 subscribers); Facebook & Twitter (280 followers)
  • Ready-to-use videos, slide sets, and fact sheets
  • Educational programming: 390 presentations at local, regional, and international meetings
  • Collaboration with 14 related research and education projects

What have we learned? 

A survey was sent out to participants in any of the project efforts, in the third year of the project and again in year five. Overall, participants found the project resources valuable, particularly the project website, the online course, and regional meetings. We surveyed two key measures: abilities and motivations. Overall, 60% or more of respondents report being able or very able to address all eight capabilities after their participation in the AACC program. A sizeable increase in respondent motivation (motivated or very motivated) existed after participation in the program, particularly for helping producers take steps to address climate change, informing others about greenhouse gases emitted by agriculture, answering client questions, and adding new information to programs or curriculum.

The first challenge in building capacity in Extension professionals was finding key communication methods to engage them. Two key strategies identified were to: 1) start programming with a discussion of historical trends and agricultural impacts, as locally relevant as available, and 2) start the discussion around adaptation rather than mitigation. Seeing the changes that are already apparent in the climatic record and how agriculture has adapted in the past and is adapting to more recent weather variability and climatic changes often were excellent discussion starters.

Another challenge was that many were comfortable with the science, but were unsure how to effectively communicate that science with the sometimes controversial discussions that surround climate change. This prompted us to include climate science communication in most of the professional development opportunities, which were then consistently rated as one of the most valuable topics.

Future Plans    

The project funding ended on March 31, 2017. All project materials will continue to be available on the LPELC webpage.

Corresponding author, title, and affiliation        

Crystal Powers, Extension Engineer, University of Nebraska – Lincoln

Corresponding author email    

cpowers2@unl.edu

Other authors   

Rick Stowell, University of Nebraska – Lincoln

Additional information

lpelc.org/animal-agriculture-and-climate-change

Acknowledgements

Thank you to the project team:

Rick Stowell, Crystal Powers, and Jill Heemstra, University of Nebraska – Lincoln

Mark Risse, Pam Knox, and Gary Hawkins, University of Georgia

Larry Jacobson and David Schmidt, University of Minnesota

Saqib Mukhtar, University of Florida

David Smith, Texas A&M University

Joe Harrison and Liz Whitefield, Washington State University

Curt Gooch and Jennifer Pronto, Cornell University

This project was supported by Agricultural and Food Research Initiative Competitive Grant No. 2011-67003-30206 from the USDA National Institute of Food and Agriculture.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Partnerships in the Manure Nutrient Management Field

Proceedings Home W2W Homew2w17 logo

Purpose

Responsible manure nutrient management improves environmental quality while maintaining agricultural productivity. Multiple organizations and individuals play a part in improving the understanding and practice of responsible management. But how does manure nutrient management information flow? The “Pathways” project’s goals were to understand and delineate pathways for effective information dissemination and use among various agricultural professional audiences that facilitate successful integrated (research/outreach/education) projects and programs. This presentation examines the relevance of partnerships within the manure nutrient management network and barriers to these partnerships.

What did we do?

We disseminated the “Pathways” survey online utilizing the mailing lists of several professional and producer organizations and listservs associated with manure management. There were 964 surveys started and 608 completed. The six types of organizations with more than 10% of the total survey population’s responses were university/Extension; government non-regulatory agencies; government regulatory agencies; producers; special government agencies; and sale or private enterprises.

The South Dakota State University Institutional Review Board deemed the survey exempt under federal regulation 45 CFR 46.101 (b) (IRB-1402010-EXM and IRB-1502001-EXM).

What have we learned?

The survey posed “How important is collaboration with each of the following groups related to manure nutrient management?” Figure 1 shows the mean relevance among all survey participants, evaluated on a scale of 1 (Not important/somewhat unimportant) to 4 (Highly important). On average, all potential partner groups were recognized as important (>2). Partnerships with producers were deemed most important (3.68) by all survey respondents.

After assessing relevance, we asked survey participants to indicate what barriers, if any, deter them from collaboration with each of the following groups related to manure nutrient management (select all that apply). For all potential partners listed, with the exception of tribal governments, “No Barriers to Use” was the most selected option. “Do Not Have a Relationship” was a common and stronger barrier for commodity, sales and service partners, compared to government agencies, for example.

The barriers “Discouraged or Not Allowed” and “No Incentive to Collaborate” were relatively small selections. The barrier “Do Not Have a Relationship” is possible to overcome at both individual and organizational levels, where needed.

Figure 1. The average relevance and the distribution of barriers to collaborating or partnering with the types of organizations specified, for purposes of manure nutrient management

Future Plans

In the future, assessing the reasons for specific partnerships can further aid improving communication and collaboration in the manure nutrient management network.

Corresponding author, title, and affiliation

Erin Cortus, Associate Professor and Environmental Quality Specialist at South Dakota State University

Corresponding author email

erin.cortus@sdstate.edu

Additional information

lpelc.org/the-pathways-project

Acknowledgements

The Pathways Project greatly appreciates the support of the North Central Region Water Network Seed Grant, South Dakota Sustainable Agriculture Research and Education, and the collaborative groups of educators, researchers and agency personnel, for improving and advocating the survey.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Transferring Knowledge of Dairy Sustainability Issues Through a Multi-layered Interactive “Virtual Farm” Website

Proceedings Home W2W Home w2w17 logo

Purpose

The goal of the Sustainable Dairy “Virtual Farm” website is to disseminate research-based information to diverse audiences from one platform. This is done with layers of information starting with the mSustainable dairy logoost basic then drilling down to peer-reviewed publications, data from life-cycle assessment studies and models related to the topics. The Virtual Farm focuses on decision makers and stakeholders including consumers, producers, policymakers, scientists and students who are interested in milk production on modern dairy farms. The top entry level of the site navigates through agricultural topics of interest to the general public. Producers can navigate to a middle level to learn about practices and how they might help them continue to produce milk for consumers responsibly in a changing climate while maintaining profitability. Featured beneficial (best) management practices (BMPs) reflect options related to dairy sustainability, climate change, greenhouse gas emissions, and milk production. Researchers can navigate directly to deeper levels to publications, tools, models, and scientific data. The website is designed to encourage users to dig deeper and discover more detailed information as their interest develops related to sustainable dairies and the environment.

What did we do?

As part of a USDA Dairy Coordinated Agricultural Project addressing climate change issues in the Great Lakes region, this online platform was developed to house various products of the transdisciplinary project in an accessible learning site. The Virtual Farm provides information about issues surrounding milk production, sustainability, and farm-related greenhouse gases. The web interface features a user-friendly, visually-appealing interactive “virtual farm” that explains these issues starting at a less-technical level, while also leading to much deeper research into each area. The idea behind this was to engage a general audience, then encourage them to dig deeper into the website for more technical information via Extension offerings.

The main landing page shows two sizes of dairy farms: 150 and 1,500-cows. The primary concept was to replace an all-day tour of multiple real dairy farms by combining their features into one ‘virtual farm’. For example, the virtual farm can describe and demonstrate the impact of various manure processing technologies. Users can explore the layout image, hover over labeled features for a brief description, and click to learn more about five main categories: crops and soils, manure management, milk production, herd management, and feed management. Each category page contains a narrative overview with illustrations and links to more detailed information.

What have we learned?

The primary benefit is that participants can learn about different practices, at their level of interest, all in one place. The virtual farm incorporates a broad theme of sustainability targeted at farming operations in the northeastern Great Lakes region of the USA.

The project has included regional differences in dairy farming practices and some important reasons for this such as environmental concerns (focus on N and/or P management in different watersheds) and long-term climate projections. Dairy industry supporters find value in having a one-stop repository of information on overall sustainability topics rather than having to visit various organizations’ sites.

Future Plans

We plan to continue to develop the website by adding relevant information, keeping information up to date, developing the platform for related topic areas and adding curriculums for school students.

Corresponding author, title, and affiliation

Daniel Hofstetter, Extension-Research Assistant, Penn State University (PSU)

Corresponding author email

dwh5212@psu.edu

Other authors

Eileen Fabian-Wheeler, Professor, PSU; Rebecca Larson, Assistant Professor, University of Wisconsin (UW); Horacio Aguirre-Villegas, Assistant Scientist, UW; Carolyn Betz, Project Manager, UW; Matt Ruark, Associate Professor, UW

Additional information

Visit the following link for more information about the Sustainable Dairy CAP Project:

http://www.sustainabledairy.org

Acknowledgements

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2013-68002-20525. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Communicating About Climate Change

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Purpose

Climate change has become a hot-button issue in mainstream American politics, and people are divided over its causes, impacts, and solutions. This presentation will offer an overview of how the public views the issue of climate change, several explanations for these differences in perception, and possible approaches for bridging the gaps through innovative communication strategies. I will also present some initial findings from a NSF funded project aimed at communicating about climate change and its long-term association with the issue of agricultural runoff in the Maumee Watershed area of Ohio.

This presentation will include information about:

  • Public opinion trends about climate change and public policy
  • Different explanations for divisions in public opinion about climate change
  • What the latest communication research tells us about best climate change communication practices, and about developing a public consensus about this issue

What Did We Do?

 

What Have We Learned?.

Future Plans

Authors

Dr. Erik Nisbet, Assistant Professor, The Ohio State University

Corresponding author email address   nisbet.5@osu.edu

 

Additional Information

You may learn more information about the topic of climate change at the Ohio State University Changing Climate website http://changingclimate.osu.edu/

On-Farm Field Days as a Tool to Demonstrate Agricultural Waste Management Practices and Educate Producers

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Teaching Best Management Practices (BMP) or introducing new agricultural waste management practices to livestock producers and farmers is a challenge. This poster describes a series of on-farm field days designed to deliver information and demonstrate on-site several waste management techniques, most of them well established in other parts of the country but sparsely used in Idaho. During these field days, Extension personnel presented each technique and offered written information on how to apply them. But without a doubt, presentations by the livestock producers and farmers who are already applying the techniques and hosted each field day at their farms was the main tool to spark interest and conversations with attendees.

Four field days were delivered in 2012 with more programmed for 2013. Demonstrated techniques reduce ammonia and odor emissions, increase nitrogen retention from manure, reduce run-off risks, and reduce emissions of greenhouse gases. Topics addressed on each field day were, a: Dairy manure collection and composting, 20 attendees. b: Dairy manure land application ten attendees. c: Grape vine prunings and dairy manure composting, 50 attendees. d: Mortality and offal on-farm composting, 40 attendees. In all cases farm owners and their managers presented and were available to answer attendees’ questions, sharing their experience, and opinions regarding the demonstrated practices. Many attendees expressed their interest and willingness to adopt some of the demonstrated practices. On-farm field days are an excellent tool to increase understanding and adoption of BMP and new technologies. Hearing experiences first hand from producers applying the techniques and being able to see them in action are excellent outreach tools. On-farm field days also fit the fast pace, busy schedule of modern producers who can later visit with Extension and other personnel if they need more details, information, and help on how to adopt the techniques they are interested in.

Why Hold Field Days on Ag Waste Management?

The dairy industry is the number one revenue commodity in Idaho. At the same time Idaho is ranked third in milk production in the nation. Idaho has more than 580,000 dairy cows distributed in 550 dairy operations (Idaho State Department of Agriculture 1/2013). The Magic Valley area in south-central Idaho hosts 54% of those dairies and 73% of all dairy cows in the state (Idaho Dairymen’s Association internal report, 2012).  Odors from dairies and other animal feeding operations are a major issue in Idaho and across the country.  In addition, the loss of ammonia from manures reduces the nutrient value of the manure and generates local and regional pollution. Dairy farmers of all sizes need more options on how to treat and dispose of the manure generated by their operations. Odor reductions, capture of nitrogen in dairy manure, reduction of greenhouse gases emissions, off-farm nutrients export, water quality protection, and reduction of their dairy operation’s environmental impact are some of the big challenges facing the dairy industry in Idaho and around the country. There are many Best Management Practices (BMP) that are proven to work on providing results related to the challenges mentioned before. Some of these practices are widely adopted in certain parts of the country or in other countries, with a lack of adoption by dairy producers and farmers in other parts of the country. This poster shows a series of Extension and research efforts designed to introduce and locally test proven BMP to dairy producers and crop farmers in southern Idaho in an effort to increase their adoption and incorporate those BMP as regular practices in Idaho agriculture. The four projects described were delivered in 2012 and some will continue in 2013.

What Did We Do?

To demonstrate and test BMP we chose to develop on-farm research projects to collect data and couple these projects with on-farm field days to demonstrate the applicability of the BMP in a real-world setting. Extension personnel developed the research and on-farm field days and did several presentations at each location. But without a doubt the stars during those field days were the dairy producers and farmers who hosted the research and demonstration events and who are already using or starting to use the techniques showcased. These pioneer producers are not only leading the way in using relatively new BMP in southern Idaho, they also share their experiences with other producers and with the academia so everybody around can learn from them. Topics addressed in each field day were, a: Dairy manure collection and composting, 20 attendees. b: Dairy manure land application, 10 attendees. c: Grapevine prunings and dairy manure composting, 50 attendees. d: Mortality and offal on-farm composting, 40 attendees.

On-farm manure collection and composting field day.

Some highlights from each project are: a. The dairy manure collection and composting field day demonstrated the operation and use of a vacuum manure collection system and a compost turner. Dairy managers and machinery operators shared their experiences, benefits and challenges related to the use of these two technologies. During the field day attendees also visited the whole manure management system of the dairy and were able to observe diverse manure management techniques. As a result of this project Extension personnel determined the necessity of generating educational programs for compost and manure management operators for dairy employees. A composting school in Spanish and English proposal was presented and a grant was obtained to develop and deliver them in 2013.

b. The dairy manure land application field day featured the demonstration of a floating manure storage pond mixer and pump, and a drag hose manure injection system. We also showed an injection tank that wasn’t operated during the demonstration. The floating pond mixer serves as lagoon mixer and pump. It mixes and pumps the manure through the drag hose system to the subsurface injector. This system dramatically reduces the time required to land apply liquid and slurried manures. It also significantly reduces ammonia and odor emissions to near background levels, as well as avoids runoff after applications. This project included research of emissions on the manure injection sites (see Chen L., et al. in this conference proceedings).

Demonstrating dairy manure subsurface injection using a drag hose system.

c. The grapevine prunings and dairy manure composting project involves research on the implications of increasing the carbon content of dairy manures using grapevine prunings and other carbon sources to retain more nitrogen in the compost, and how it varies among three diferent composting techniques. This project includes two field days, one during the project (2012), and another one at the end of it in 2013. The demonstration includes how to compost using mechanically turned windrows (common in Idaho), passive aerated, and forced aerated windrows (both very rarely used in Idaho). Another novelty in this project is that it aims to bring together dairy producers and fruit & crop producers, or landscaping insustry so they can combine their waste streams to produce a better compost and to reduce the environmental impact of each operation. Several producers of the diverse audience who attended showed interest in adopting some of the composting techniques presented during the field day.

On-farm composting methods featuring grape vine prunings and dairy manure compost

d. The mortality and offal on-farm composting project was located at a diversified sheep farm that includes sheep and goat dairy and cheese plant, meat lambs, and chickens. A forced aerated composting box was used to compost lamb offal, hives, lamb and chicken mortalities, and whey from the cheese plant. A very diversified audience attended the field day and the composting system generated a lot of interest. The farm owner was so pleased with the system that she created a second composter with materials she had on-hand to increase her composting capabilities and compost all year round. The producer stopped disposing of lamb offal, hives, and mortalities at the local landfill.

What Have We Learned?

On-farm field days are a great tool to demonstrate and encourage the application of otherwise seldom applied techniques. They also can serve a dual purpose of demonstration and research, allowing for quality data collection if designed properly. Farmers’ collaboration and full participation during all phases of the project is paramount and pays off by having a very enthusiastic and collaborative partner. Identiying progressive and pioneer producers that are already applying new BMP or are willing to take the risk is very important to develop this kind of on-farm experience. In general these individuals are also willing to share their knowledge, experience, and results with others to increase the adoption of such techiques. Having a producer hosting and presenting during the field day, at their facilities (as opposed to a dedicated research facility) generates great enthusiasm from other producers and helps to “break the ice” and bring everybody to a friendly conversation and exchange of ideas if properly facilitated.

Future Plans

On both projects, a. manure collection and composting and b. manure injection we will generate a series of videos to demonstrate the proper application of BMP, and educational printed material will also be published. Project c. grape prunings and manure composting is still going on and we will finish collecting data by mid 2013. A second field day will be offered and videos and printed educational material will be developed. Project d. will see an expansion with a mortality composter for dairy calves being installed at a dairy, and with a field day following after the first compost batch is ready. Additional programs are in the works; these programs incorporate the on-farm demonstration and research dual purpose and have high participation from the involved producers.

Authors

Mario E. de Haro-Marti, Extension Educator, Gooding County Extension Office, University of Idaho Extension.  mdeharo@uidaho.edu

Lide Chen, Waste Management Engineer

Howard Neibling, Extension Irrigation and Water Management Specialist

Mireille Chahine, Extension Dairy Specialist

Wilson Gray, District Extension Economist

Tony McCammon, Extension Educator

Ariel Agenbroad, Extension Educator

Sai Krishna Reddy Yadanaparthi, Graduate student

James Eells, Research Assistant. University of Idaho Extension.

Acknowledgements

Projects a. and b. were supported by a USDA-NRCS Conservation and Innovation Grant (CIG). Project c. was supported by a USDA-NRCS Idaho CIG. Project d. was supported by a University of Idaho USDA-SARE mini grant. We also want to thank Jennifer Miller at the Northwest Center for Alternatives to Pesticides for her help and support with projects c. and d. Finally, we want to thank all producers involved in these projects for their support and openess to work with us, and for their innovative spirit.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.