PFAS – What is in Your Water?

This webinar provides a basic understanding of PFAS. Some of the questions that are answered include: What is PFAS? Where did it come from? Where is it found? What are the potential issues related to PFAS? This is the first of a two-part series on PFAS and will focus mainly on water related factors and concerns. This presentation was originally broadcast on October 30, 2020. Continue reading “PFAS – What is in Your Water?”

Conservation Practices and Animal Agriculture


Module Home | Importance of Conservation | Conservation Practices in Animal Ag (you are here)

Many conservation practices are available for animal agriculture producers interested in protecting air and water quality, improving soil health or wildlife habitat, and increasing the productivity of animals, pastures, and crops. This module will especially focus on conservation practices impacting water quality with the goal of keeping clean water clean.

Farmers and ranchers can implement conservation practices on their own. They can also seek technical or financial assistance through agencies such as a local Conservation District or USDA Natural Resources Conservation Service (NRCS).

NRCS has developed approximately 160 conservation practice standards at the national level. States have the option of adopting a standard and using the same or more stringent criteria. Farmers should use state-adopted standards whenever available. To find out whether your state has adopted a certain standard, contact your local NRCS office.

Conservation practices relevant to water quality and animal agriculture can be divided into three categories. Clicking the link will take you to a virtual tour website that describes each practice and includes several photos.

Manure
Management

manure storage structure

Land & Pasture Management

stream crossing

Mortality
Management

poultry mortality compost

Conservation Practices Included In Each Virtual Tour

Manure Management

  • Anaerobic Digester (366)
  • Composting Facility (317)
  • Dust Control from Animal Activity on Open Lot Surfaces (Ac.) (375)
  • Feed Management (592)
  • Nutrient Management (590)
  • Roofs and Covers (367)
  • Vegetated Treatment Area (635)
  • Waste Facility Closure (360)
  • Waste Recycling (633)
  • Waste Separation Facility (632)
  • Waste Storage Facility (313)
  • Waste Transfer (634)
  • Waste Treatment (629)
  • Waste Treatment Lagoon (359)

Land & Pasture Management

  • Access Control (472)
  • Cover Crop (340)
  • Critical Area Planting (342)
  • Denitrifying Bioreactor (605)
  • Diversion (362)
  • Fence (382)
  • Filter Strip (393)
  • Grassed Waterway (412)
  • Heavy Use Protection Area (561)
  • Livestock Shelter Structure (576)
  • Prescribed Grazing (528)
  • Riparian Forest Buffer (391)
  • Riparian Herbaceous Cover (390)
  • Saturated Buffer (604)
  • Streambank & Shoreline Protection (580)
  • Stream Crossing (578)
  • Watering Facility (614)

Mortality Management

  • Animal Mortality Facility (316)
  • Emergency Animal Mortality Management (368)

Applying Conservation Practices to Individual Farms

Conservation practices should be implemented on an individual farm basis to ensure they are addressing a natural resource concern and will be effective in the particular farm setting.

Some questions to ask when evaluating whether a conservation practice will be beneficial for an animal agriculture operation:

  • Is the farm a confinement facility or are animals on pasture (or both)?
  • Are confined animals kept under a roof or open lots (or both)?
  • Where are pastured animals housed or fed in the winter?
  • Does the operation include crop land?
  • Are there waterbodies such as streams or ponds on the facility or crop land?
  • How does the farm store or handle manure; as a solid or slurry/liquid?
  • How much manure does the farm produce and where is it currently stored?
  • Are there neighbors nearby? How many and where?
  • Are there environmentally sensitive features on or near the facility? Wells, sinkholes, public parks or public use areas, wildlife, impaired waterbody, or similar features should all be considered.
  • What are the goals of the farmer or rancher? What is important to them and what do they have interest and capacity to implement and manage?

For example, consider these fictional farms. Both have 200 dairy cows and are interested in developing a manure management system. They are both in the same state with similar soil types.

Farm 1: There is a child in college interested in returning to help manage the farm, so future expansion is a strong possibility. The farm has sufficient cropland to use the manure they currently produce as crop fertilizer.

Farm 2: This farm is considering organic production. They do not have much cropland and must export most of their manure to neighboring crop farmers. This farm also has connections to organic crop farmers as well as the nursery and landscape industry.

While both farms have similar characteristics, they have very different goals. Their conservation plans could be very different. Farm 1 is likely to consider an earthen or concrete slurry manure storage structure with the biggest question being how large to make the structure considering a possible expansion in the near future. They are likely to develop a comprehensive nutrient management plan (CNMP) to ensure the cropland base continues to support any future expansion.

Farm 2 may look at manure collection and storage very differently. The cattle may have access to open lots (manure is handled as a solid) or grazing paddocks. Given the off-farm connections and lack of crop land, composting or other ways to generate value-added products may be an option. Marketing manure or exporting it off-farm will be important to this farm’s manure management plans.

Both farms intend to protect natural resources but need to implement different practices to reach their goals.

Previous: Importance of Conservation | Next: (Home) Animal Ag, Manure, and Stewardship

Acknowledgements

These materials were developed by the Livestock and Poultry Environmental Learning Center (LPELC) with funding from the USDA.Natural Resources Conservation Service through an interagency agreement with the U.S. Environmental Protection Agency.
All images on this page, unless otherwise noted, are courtesy of the U.S. Department of Agriculture or USDA NRCS. For questions on this material, contact Jill Heemstra, jheemstra@unl.edu.

 

The Importance of Conservation in Animal Agriculture


Module Home | Importance of Conservation (you are here) | Conservation Practices in Animal Ag

This page focuses largely on USDA Natural Resources Conservation Service (NRCS) practice standards and how NRCS works with farmers by providing technical and financial assistance. The next section in this module discusses many of the practices relevant to animal agriculture in greater detail.

 

Why is conservation important in animal agriculture?

Conservation is key for farmers interested in protecting natural resources while producing food, fuel, and fiber from working lands. There are a variety of conservation practices that can be voluntarily implemented to protect natural resources for surrounding ecosystems, community, and future generations. Conservation practices can have both on-farm and off-farm benefits and can be customized to the unique location, soils, and needs of each farm. Conservation practices are site-specific, not one-size-fits-all. They must be planned and installed with the characteristics of the individual site in mind.

Many conservation practices are voluntary and incentivized through technical and financial assistance. If a farm is subject to regulatory oversight, NRCS practice standards may not meet the requirements of state or federal regulations or permits. Producers should double-check those requirements rather than assuming that they will suffice.

several different types of animal agriculture operations

Photo 1. Animal agriculture operations are very different from farm to farm.

Because manure is one of the largest by-products of animal feeding operations, conservation practices are often designed to increase the farmer’s ability to manage manure as a beneficial resource and reduce risk associated with manure application. Nutrients (whether from manure or from inorganic fertilizer) not taken up by crops can run off from fields or leach to groundwater through rain events or irrigation.

Conservation practices can have beneficial impacts on water quality, wildlife habitat, and air quality. Adopting practices that result in manure applications that are well-timed, at agronomic rates, and away from sensitive locations can help farmers make significant positive contributions to water quality. Conservation practices are important in grazing operations to improve soil and vegetation health and to protect water quality and wildlife habitat. For example, restricting livestock access to a stream or creek reduces the chance the animals will deposit manure or urine in the water, break down stream banks and beds, and/or stir up sediment. Rotational grazing can provide important rest and recovery time for vegetation and allow wildlife cover for nesting or raising their young.

Agencies Involved in Implementing Conservation on Farms

There are several public agencies that cooperate to encourage the use of conservation practices on farms:

USDA Natural Resources Conservation Service (NRCS)

usda service center sign

Photo 2. A local USDA Service Center

USDA NRCS was established in 1935 to work in close partnerships with farmers and ranchers, local and state governments, and other federal agencies to maintain healthy and productive working landscapes on a voluntary, non-regulatory basis. Originally known as the “Soil Conservation Service,” the name was changed to NRCS in 1994 to better reflect the broad scope of the agency’s mission. Learn more about the history of NRCS.

The National Office is located in Washington, DC, and is where national policy, procedures, and conservation practice standards are developed. State offices adopt these standards, either directly, or with changes that make the standards more stringent. The local or district office (Photo 2) works directly with farmers and ranchers to assist them in protecting natural resources by implementing conservation practices on working land. They provide technical and sometimes financial assistance for conservation practices. Learn more about how NRCS is organized.

Video: How to receive conservation assistance from NRCS

Financial assistance for USDA NRCS conservation practices comes from the Farm Bill, a piece of legislation that is developed about every 5 years by Congress. The Farm Bill is traditionally made up of several programs in the areas of food and nutrition assistance, marketing, commodity support, research, conservation, and more. The conservation programs authorized in the 2014 Farm Bill include:

  • Environmental Quality Incentives Program (EQIP)
  • Conservation Stewardship Program (CSP)
  • Agricultural Management Assistance Program (AMA)

Local NRCS offices will help farmers determine if their conservation needs are a fit for financial assistance. Factors that they will consider include:

  • Whether the farm is in a watershed or area designated with a high need for conservation practices
  • Past efforts of the farmer
  • Legislative priorities, such as bioenergy
  • The need to encourage beginning, veteran, and minority farmers

More information on financial assistance is available below (How Do Farmers Access Technical or Financial Assistance for Conservation?)

Conservation Districts

conservation district signPhoto 3. This local conservation district office is located in the same building as the local USDA service center.

Conservation districts are local governmental units responsible for protecting and conserving natural resources in their assigned geographic area. They are governed by a locally-elected board. In some states, they may have a different name, such as soil and water conservation district or natural resource conservation district. There are over 3,000 conservation districts, nationwide.

Conservation districts often partner with NRCS (Photo 3) to work with local farmers, ranchers, and other landowners to implement conservation practices that help address issues of local importance. By working together, NRCS and the districts can more efficiently address conservation needs.

US Environmental Protection Agency

EPA’s role in conservation is primarily regulatory but also includes non-regulatory, voluntary, and incentive-based programs such as the Clean Water Act Section 319 funding. This program provides grants to states and tribes to reduce nonpoint source runoff.

EPA also develops partnerships with industry. One such example is the EPA AgSTAR program, which works with farmers on a voluntary basis to encourage the use of anaerobic digesters for manure treatment and renewable energy generation.

Recommended resource: EPA National Agriculture Center includes information on regulations, compliance assistance, and partnerships.

State Environmental/Water Quality Agencies

sky reflected in water

Photo 4. State environmental agencies are generally tasked with enforcing the Clean Water Act and Clean Air Act.

Many Clean Water Act and other programs that originate with federal statutes are implemented by State, Tribal, and Territorial environmental agencies. Those programs generally work directly with local partners and landowners to develop watershed plans and implement nonpoint source control measures. Those partners often include Conservation Districts for agricultural projects and often utilize resources from multiple agencies and organizations, including USDA. Under Section 319 of the CWA, states, territories, and tribes receive grant money that supports a wide variety of activities to control nonpoint source pollution, including technical assistance, financial assistance, education, training, technology transfer, demonstration projects, and monitoring to assess the success of nonpoint source implementation projects.

Recommended Resource: Nonpoint Source Success Stories features stories about nonpoint source impairments with documented water quality improvements attributable to restoration efforts.

State Agricultural Departments

For the most part State agricultural Departments do not play a direct regulatory role in enforcing the Clean Water Act or Clean Air Act. One major area where state agriculture departments are involved in the implementation of conservation practices are in the case of animal mortality, both routine and catastrophic. Most states have regulations that specify appropriate methods for carcass disposal. State agriculture departments may also develop programs that encourage the use of conservation practices through cost-share, educational outreach, or other methods.

NRCS Conservation Practice Standards

There are over 160 conservation practices for which national standards have been developed. Any that are adopted by a state can be implemented in that state to assist farmers and ranchers with their environmental stewardship efforts. Farmers and ranchers should use the conservation practice adopted by the state, rather than the national standard.

To find your state’s approved practice standards, contact your local NRCS office for assistance.

conservation practice collage

Photo 5. Many different conservation practices are used on animal agriculture operations.

What are conservation practice standards?

page 1 of the conservation practice standard for anaerobic digester (366)

Photo 6. A screenshot of the Anaerobic Digester conservation practice standard. Click here to download the full-size PDF version.

A conservation practice is defined as: “A specific treatment, such as a structural or vegetative measure, or management techniques, commonly used to meet specific needs in planning and implementing conservation, for which standards and specifications have been developed.”

NRCS conservation practice standards provide guidance for applying conservation practices and set the minimum level for acceptable application of the technology. Each standard is given a number. For example, the standard for “Anaerobic Digester” is #366. Practice standards include information (Photo 6), such as:

  • Purpose: The conservation goal achieved with this practice
  • Where it applies: The type of farm, land use, or situation where the practice is appropriate
  • Criteria: Location, safety considerations, permits needed, management, related conservation practices, and other important considerations

Three categories of conservation practices that apply to animal agriculture include:

  • Manure Management
  • Land and Pasture Management
  • Mortality (Dead Animal) Management

Specific practices and details about each practice are included in the next section, Conservation Practices in Animal Agriculture.

How are standards for practices developed/updated?

Practice standards may be newly identified or change over time based on new science and technology. They are periodically reviewed and updated, usually every 5 years. Any new or updated practice standard is reviewed by technical experts in pertinent fields and is available for review and comment by the public before it is adopted.

NRCS publishes national conservation practice standards in its National Handbook of Conservation Practices (NHCP). If a practice is adopted by a state, the state has some latitude to develop a more stringent or specific version that fits typical conditions or situations in that state.

Recommended Resource: The first 12-13 minutes of the video “Use of NRCS Conservation Practice Standards and Specifications” describes the process of how a new standard may be identified as well as the process used to validate it and the sections included in a standard. It is presented for NRCS staff, but is useful for others that work with farmers who want more background on how a practice standard is developed and what is required to be in a standard.

What is conservation planning?

conservation planning

Photo 7. Conservation planning needs to consider individual farm goals and current conditions.

A conservation plan is a record of the conservation practices implemented on a farm or ranch. It may include sub-plans such as one for grazing management, comprehensive nutrient management, wildlife management, or others.

Conservation planning starts with a farmer or rancher recognizing a problem area or wanting to improve some aspect of the farm or ranch. The next step is to contact NRCS. NRCS helps the farmer or rancher review and analyze the current conditions for possible solutions. Depending on the preferences of the client, certain practices may be selected to include in the conservation plan.

Conservation plans are voluntary and are developed by NRCS at no cost.

How do farmers access technical or financial assistance for conservation?

Contact your local NRCS office to access technical assistance in implementing conservation practices. If conservation practices are eligible for financial assistance (cost-share), farmers complete and submit an application. If approved for cost-share, a contract is developed that specifies what will be done, when it will be done, and how much assistance will be provided.

A look at specific practices that can apply to animal agriculture operations is discussed in the next section, Conservation Practices in Animal Agriculture

Previous: (Home) Animal Ag, Manure, and Water Quality | Next: Conservation Practices in Animal Ag

Acknowledgements

These materials were developed by the Livestock and Poultry Environmental Learning Center (LPELC) with funding from the USDA.Natural Resources Conservation Service through an interagency agreement with the U.S. Environmental Protection Agency.
All images on this page, unless otherwise noted, are courtesy of the U.S. Department of Agriculture or USDA NRCS. For questions on this material, contact Jill Heemstra, jheemstra@unl.edu.
 

USDA-NRCS and the National Air Quality Site Assessment Tool (NAQSAT) for Livestock and Poultry Operations

Proceedings Home | W2W Home w2w17 logo

Purpose

The National Air Quality Site Assessment Tool (NAQSAT) was developed as a first-of-its-kind tool to help producers and their advisors assess the impact of management on air emissions from livestock and poultry operations and identify areas for potential improvement related to those air emissions.

What did we do?

In 2007, several land-grant universities, with leadership from Michigan State University, began developing NAQSAT under a USDA-NRCS Conservation Innovation Grant (CIG). The initial tool included beef, dairy, swine, and poultry operations. A subsequent CIG project, with leadership from Colorado State University, made several enhancements to the tool, including adding horses to the species list. In 2015, USDA-NRCS officially adopted NAQSAT as an approved tool for evaluating air quality resource concerns at livestock and poultry operations. USDA-NRCS also contracted with Florida A&M University in 2015 to provide several regional training workshops on NAQSAT to NRCS employees. Six training workshops have been completed to date (Raleigh, NC; Modesto, CA; Elizabethtown, PA; Lincoln, NE; Richmond, VA; and Yakima, WA) with assistance from multiple NAQSAT development partners. Additionally, USDA-NRCS revised its comprehensive nutrient management plan (CNMP) policy in October 2015 to make the evaluation of air quality resource concerns mandatory as part of CNMP development.

Snippet from website of the National Air Quality Site Assessment Tool

Group photo of team in field

Zwicke in class lecturing

Zwicke and group in animal housing facility

What have we learned?

NAQSAT has proven to be a useful tool for bench-marking the air emissions impacts of current management on confinement-based livestock and poultry operations. In the training sessions, students have been able to complete NAQSAT runs on-site with the producer or producer representative via tablet or smartphone technologies. Further classroom discussion has helped to better understand the questions and answers and how the NAQSAT results can feed into the USDA-NRCS conservation planning process. Several needed enhancements and upgrades to the tool have been identified in order to more closely align the output of the tool to USDA-NRCS conservation planning needs. NAQSAT has also proven to be useful for evaluating the air quality resource concern status of an operation in relation to the CNMP development process.

Future Plans

It is anticipated that the identified needed enhancements and upgrades will be completed as funding for further NAQSAT development becomes available. Additionally, as use of NAQSAT by USDA-NRCS and our conservation planning and CNMP development partners expands, additional training and experience-building opportunities will be needed. The NAQSAT development team has great geographic coverage to assist in these additional opportunities.

Corresponding author, title, and affiliation

Greg Zwicke, Air Quality Engineer – Air Quality and Atmospheric Change Team, USDA-NRCS

Corresponding author email

greg.zwicke@ftc.usda.gov

Other authors

Greg Johnson, Air Quality and Atmospheric Change Team Leader, USDA-NRCS; Jeff Porter, Animal Nutrient and Manure Management Team Leader, USDA-NRCS; Sandy Means, Agricultural Engineer – Animal Nutrient and Manure Management Team, USDA-NRCS

Additional information

naqsat.tamu.edu

https://lpelc.org/naqsat-for-swine-and-poultry

https://lpelc.org/naqsat-for-beef-and-dairy/

Acknowledgements

C.E. Meadows Endowment, Michigan State University

Colorado Livestock Association

Colorado State University

Florida A&M University

Iowa Turkey Federation

Iowa Pork Producers

Iowa Pork Industry Center

Iowa State University

Iowa State University Experiment Station

Kansas State University

Michigan Milk Producers Association

Michigan Pork Producers Association

Michigan State University

Michigan State University Extension

National Pork Board

Nebraska Environmental Trust

Oregon State University

Penn State University

Purdue University

Texas A&M University

University of California, Davis

University of Georgia

University of Georgia Department of Poultry Science

University of Idaho

University of Maryland

University of Maryland Department of Animal and Avian Sciences

University of Minnesota

University of Missouri

University of Nebraska

USDA-ARS

Virginia Tech University

Washington State University

Western United Dairymen

Whatcom County (WA) Conservation District

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Overview of Solid-Liquid Separation Alternatives for Manure Handling and Treatment Document

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Is Solid-Liquid Manure Separation Worthwhile?

* Presentation slides are available at the bottom of the page.

Solid-liquid separation of animal manures and other agricultural products can be an integral part of a livestock operation ranging from improved facility performance to enhanced nutrient management.  A document entitled “Solid-Liquid Separation Alternatives for Manure Handling and Treatment” is being created through work by Clemson University and funding from USDA-Natural Resources Conservation Service.  The purpose of this document is to assist in solid-liquid separation technology selection, evaluation of separation performance, and quantifying the impact of solid-liquid separation on manure management.  This presentation will provide an outline of this document including methods of solid-liquid separation, influence of manure characteristics and handling methods, fundamentals of solid-liquid separation, performance of various solid-liquid separation technologies, separation enhancement methods, and design considerations.  An overview of various farm scale separation technologies is also presented in the solid-liquid separation document.

What Did We Do?

Geobag used with metal salt and polymer to separate solids and nutrient partitioning of swine manure

In this document we have provided a detailed compilation of empirical, theoretical, and practical information related to the performance and design of solid-liquid separation systems for animal manure treatment. The information is divided into the following chapters: Methods of Solid-Liquid Separation, Fundamentals of Solid-Liquid Separation, Measures of Solid-Liquid Separation Performance, High-Rate Solid-Liquid Separation, Unique Applications of Solid-Liquid Separation Technology, and Design Considerations. Within these chapters detailed information is provided on: the influence of entrainment on the performance of mechanical separators, design of gravity settling using discrete particle settling and hindered settling theory, efficacy of combining separator methods in a single machine, benefits of using coagulants and flocculants, benefits of solid-liquid separation, and a summary of the solid-liquid separation methods that have been used with sand-laden dairy manure. The publication also provides twenty-one detailed examples such as: design of settling basins based on hindered settling velocities, calculation of the performance of a variety separator options using field data, calculation of dimensions for sand lanes, determination of chemical need to enhance mechanical solid-liquid separation, and sizing of storages for separated solids. Numerous system design diagrams are also provided to demonstrate the wide variety of ways that solid-liquid separation can be implemented into an animal manure treatment system.

What Have We Learned?

Sand settling lane for flush dairy operation

This work brings together fundamental information about solid-liquid separation, benefits and limitations of many separation technologies, performance measurement techniques along with design considerations into one document.

Future Plans

This document will be published as a USDA-NRCS technical note or as part of the National Engineering Handbook, Part 651 Agricultural Waste Management Field Handbook.

Authors

Jeffrey P. Porter, P.E. Environmental Engineer     Manure Management Team USDA-Natural Resources Conservation Service; e-mail – Jeffrey.Porter@gnb.usda.gov

Dr. John P. Chastain, Professor and Extension Agricultural Engineer School of Agricultural, Forestry, and Environmental Sciences Clemson University; email – jchstn@clemson.edu

Additional Information

Screw presses used on a dairy farm following anaerobic digestion

John Perkins Chastain, PhD Homepage

East National Technology Support Center Directory

NRCS on Livestock

Solid Separation Technologies for Animal Manure Webinar

Acknowledgements

A special thank you goes out to the Piedmont-South Atlantic Coast Cooperative Ecosystems Studies Unit (CESU).  This Cooperative and Joint Venture Agreement allowed for this work to take place.

Additional support was provided by the Confined Animal Manure Managers Program, Clemson Extension, Clemson University, Clemson, SC.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Natural Resource Conservation Service (NRCS) Manure Related Conservation Innovation Grants (CIG)

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

A number of the manure related Conservation Innovation Grants (CIG) have been successful.  Several feed management related projects have been major successes under the CIG program.  Other successful projects have dealt with such technologies as anaerobic digesters; community digesters; environmental credit trading; lagoon management; manure to energy generation; alternative litter sources, storage, and handling; and pathogen, odor, and emissions mitigation, to name just a few. 

The presentation will provide specific numbers of projects and funding per year, and information about actual projects that NRCS considers to have been successful. 

What Is the Purpose of the CIG Grant Program?

Glenn Carpenter came to Natural Resources Conservation Service as a Senior Economist in December of 2001 with the Animal Husbandry and Clean Water Division.  In May, 2004 he became the agency’s National Leader for Animal Husbandry, with that Division.  In 2010 his position was moved to the Ecological Sciences Division.  Much of his work with NRCS has been related to the animal waste issue and the agency’s interaction with EPA over the CAFO Rule. 

Glenn has three degrees in Poultry Science from Michigan State University.  Prior to joining NRCS, Glenn served in Extension Poultry positions at two universities.

The 2002 Farm Bill created a mechanism under the Environmental Quality Incentives Program (EQIP) for a program of Conservation Innovation Grants (CIG).  These grants were “…intended to stimulate innovative approaches to leveraging Federal investment in environmental enhancement and protection, in conjunction with agricultural production…”  The grants were to provide a mechanism for funding projects to aid in technology development and transfer.    The granting program actually began in 2004, and has continued since that time.

What Did We Do?

By statute, the USDA Natural Resources Conservation Service cannot do research.  Because of this, and because the interest of NRCS lies in directly assisting farmers and ranchers in the adoption of technologies that will benefit conservation, projects funded under this program must be in the field demonstration or tool application stages.  Since the initial grant funding cycle in 2004, NRCS has provided funding through EQIP every year.  To date nearly 500 grants have been awarded, with total funding in excess of $180 million. 

A large share of these CIGs has been strongly animal, and/or manure related.  Almost 25 percent of the total number of grants has been animal related, and these grants have received slightly over 26 percent of the total dollars.  About 19 percent of the total grants have been manure related and these have received about 22 percent of the funding.  Those animal related grants that are not manure related largely deal with range and pasture systems.

What Have We Learned?

Several feed management related projects have been major successes under the CIG program.  Other successful projects have dealt with such technologies as anaerobic digesters; community digesters; environmental credit trading; lagoon management; manure-to-energy generation; alternative litter sources, litter storage, and handling; and pathogen, odor, and emissions mitigation from manure, to name just a few. 

The number and variety of funded projects has covered a wide range of geographic areas and technical  innovations.  A multistate feed management project resulted in training programs, a tech note for NRCS, and many fact sheets and other materials that are available on Livestock and Poultry Environmental Learning Center webpage.   Another major grant demonstrated the effectiveness of filter strips and other vegetated treatment areas on mitigating manure runoff from cattle feedlots.  Utilizing high pressure injection of manure, a Pennsylvania project demonstrated a decrease in odor and runoff while also preserving nitrogen.  Several projects have successfully demonstrated the effects of precision feeding of dairy cattle to show the change in manure nutrients.  Projects have demonstrated the effectiveness of different tillage systems and technologies on manure nutrient runoff.  Other projects have dealt with innovative waste-to-energy technologies, or waste to value-added-product creation.   These are just a few of the number and variety of projects funded  through the Conservation Innovation Grants program.

Future Plans

The success of the CIG program since 2004, both in numbers of projects and in innovative technologies and tools applied, demonstrates that the program is important to agriculture in the U.S.  NRCS has shown its support by continually funding the program, and by making additional moneys available for special targeted CIGinitiatives.

Authors

Glenn H. Carpenter, National Leader, Animal Husbandry, USDA Natural Resources Conservation Service glenn.carpenter@wdc.usda.gov

Gregorio Cruz, CIG Program Manager, NRCS, Rosslyn, VA;  William Reck, Environmental Engineer,  NRCS, Greensboro, NC;  Jeffrey Porter, Environmental Engineer, NRCS, Greensboro, NC; Cherie Lafleur, Environmental Engineer, NRCS, Ft Worth, TX; Sally Bredeweg, Environmental Engineer, NRCS, Portland, OR; Harbans Lal, Environmenal Engineer, NRCS, Portland, OR; Greg Zwicke, Environmenatl Engineer, NRCS, Ft Collins, CO

Additional Information

NRCS Conservation Innovation Grant webpage at:  http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/cig/

Acknowledgements

United States Department of Agriculture, Natural Resources Conservation Service, Conservation Innovation Grants Program

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.