Improving disease identification, treatment, & antibiotic stewardship in livestock production

This webinar will focus on assisting livestock farmers and veterinarians to better identify, diagnose, and treat sick animals with the goal of improving farm efficiency and antibiotic stewardship. This webinar is brought to you by the iAMResponsibleTM Project, a nationwide team of researchers and extension experts working to develop and deliver effective outreach on antimicrobial resistance for diverse audiences. This presentation was originally broadcast on August 18, 2023.

If you have difficulties please see our webinar troubleshooting page. If you need to download a copy of a segment, submit a request. The embedded videos can be viewed full screen by clicking on the icon in the lower right corner.

An Introduction: Improving disease ID, treatment, & antibiotic stewardship in livestock production

Mara Zelt, University of Nebraska – Lincoln (5:06)

Next Generation Grow-Finish Swine Health and Growth

Tami Brown-Brandl, University of Nebraska-Lincoln (22:59)

Presentation Slides

Enhanced Veterinary Diagnostics and Antimicrobial Stewardship

J. Dustin Loy, University of Nebraska-Lincoln (21:20)

Presentation Slides

Antimicrobial Stewardship in Dairy Production: Mastitis Examples

Daryl Nydam, Cornell University (19:50)

Presentation Slides

Questions from the Audience

All presenters (9:40)

More Information

Continuing Education Units

Certified Crop Advisers (CCA, CPAg, or CPSS)

View the archive and take the quiz (not available yet). Visit the CCA continuing education page for additional CEU opportunities.

American Registry of Professional Animal Scientists (ARPAS)

View the archive and report your attendance to ARPAS via their website. Visit the ARPAS continuing education page for additional CEU opportunities.

 

Characterization of General E. coli and Salmonella in Pre- and Post-Anaerobically Digested Diary Manure

Purpose

Anaerobic digestion (AD) speeds up natural degradation of manure during storage, reduces odor, and produces energy by capturing methane. After AD, wastewater can be utilized on farms as a crop fertilizer and irrigation, and solids can be used for animal bedding.

Manure can be environmentally problematic and a reservoir of infectious agents (Guan et al., 2003). Previous studies have shown that anaerobic digestion of dairy manure decreases concentrations of viable fecal bacteria known to cause zoonotic diseases, notably E. coli and Salmonella (Aitken et al., 2007; Frear et al., 2011; Pandey and Soupir, 2011; Manyi-Loh et al., 2014; Chiapetta et al., 2019)

This study’s objective was to characterize and compare genetic changes in pathogens pre- and post-AD as evaluated by metabolic changes (sugar fermentation) or antimicrobial resistance to antibiotics. Generic E. coli (GEC) and Salmonella were selected for evaluation in this study as both are known to cause food borne and zoonotic disease. While a limited number of specific bacteria have been studied, AD has shown efficacy in pathogen reduction for both GEC and Salmonella. Characterizing these bacteria in AD influent and effluent can more firmly establish the efficacy of AD for reducing potential risks to human and animal health posed by these pathogens. We hypothesized that GEC and Salmonella would meet the 75% threshold of genetic similarity (post-AD vs pre-AD), suggesting limited mutation and lowered risk of AD creating resistant strain.

What Did We Do

An anaerobic digester (AD) in Monroe, WA was utilized from December 2008 through March 2010 to assess its effects on the survival and adaptation of pathogens in dairy manure (Chiapetta et al., 2019). The AD was a plug-flow design with a capacity of approximately 6.1million liters that was operated at ~38°C for a 17-day retention time. Inputs to the AD were comprised of 70% dairy cow manure and 30% pre-consumer food wastes from the dairy farm where the AD was located and from local food processors, respectively. Salmonella and general E. coli (GEC) were isolated from samples collected before and after AD. GEC isolates were characterized by sugar fermentation profiles (adonitol, dulcitol, melibiose, raffinose, rhamnose, salicin, sorbose, sucrose and the indicator medias MAC and MUG) and genetically compared using repetitive extragenic palindromic chain reaction (REP-PCR) followed by Ward’s cluster analysis. Salmonella were separated into serogroups. The Kirby Bauer disk diffusion method was used to identify antibiotic resistance (AMR). Antibiotics used were: ampicillin, chloramphenicol, gentamycin, amikacin, kanamycin, sulfamethaxazole/triemthroprim, streptomycin, tetracycline, amoxicillin/clavulanic acid, nalidixic, sulfisoxazole, and ceftazidime.

What Have We Learned

Antibiotic resistant GEC isolates were isolated from 22.3% and 19.1% of pre- and post-AD samples, respectively, and were observed to be genetically similar after clustering for sugar fermentation. Analysis of genetic similarity using the Pearson’s chi square method (e.g. likelihood–ratio) revealed that AD status (pre- vs. post AD) antibiotic resistance was not statistically significantly associated with AD (Figure 1, Table). Any effect of AD on AMR was dependent on grouping based on % genetic similarity.

Genetic analysis (REPPCR for GEC) yielded similar results, following a Pearson’s Chi Square test of log likelihood it was determined that AD status (pre- vs. post AD) and AMR were not significantly associated (Figure 1). Any effect of AD on AMR was dependent on grouping (Table 1).

Salmonella predominant serogroups (Table 2) (B, C1, and E1) remained at 23%, 9%, and 2% AMR pre- and post-AD. Analyses showed a significant interaction between Salmonella serogroup vs. source (p=0.0004) and serogroup vs. AMR (p<0.0001). No interaction was observed between source (pre- or post-AD) and AMR for Salmonella, p=0.12. There was no uniform effect for Salmonella as a group based on AD.

In summary, GEC sampled pre- and post-AD showed no difference in sugar fermentation, nor significant genetic dissimilarity, nor antibiotic resistance. Salmonella serotypes were observed to be equally or inconsistently effected by AD. Overall, the evidence suggests that anaerobic digestion does not create antibiotic resistant GEC and Salmonella.

Figure 1. Dendrogram of the sugar fermentation cluster analysis of generic E. coli. G= group based on sugar fermentation similarity, and n= number of isolates within each group.

Running a Chi Square on that: AD status (pre- vs. post AD) antibiotic resistance was not statistically significantly associated with this set of fermentation cluster memberships.

Pearson chi2(19) = 25.5411 Pr = 0.143

Table 1 – Data distribution of REPPCR GEC data
Pre-AD Post-AD
Grouping Susceptible Resistant Susceptible Resistant
1 2 2 3 (Am*)
2 2 5 (2 – Am, Cf, S, G, Te) (Am, S, Te) (Te)
(Amc, Am, Cf)
1 3 (Cf)
(2 – C, S, G, Te)
3 6
4 5 3 (2 – G, Te)
(Cf, C, S, G, Te)
9
5 1 2 1 (Amc, Am, Cf,  S, G, Te)

*Am = Ampicillin, C= Chloramphenicol, CF = Ceftiofur, S = Streptomycin, G = Sulfasoxizole, Te = Tetracycline, Amc = Amoxycillin clavulanic acid

(fisher.test(tbl, simulate.p.value = TRUE, B = 1e5)

Fisher’s Exact Test for Count Data with simulated p-value (based on 1e+05 replicates)

p-value = 0.104

If no selection is occurring, output equals input, so at P < 0.1 is a trend for a selective process.

Table 2 – Salmonella – Number of susceptible or resistant bacteria
Serogroup Pre-AD Susceptible Pre-AD Resistant Post-AD Susceptible Post-AD Resistant
B 6 1 1 10
C1 12 4 14 0
C2 1 8 0 0
E1 34 0 50 0
K 4 2 2 2
Total 57 65 29 12
% 47 53 71 29

Configuration 1 SeroGrp*ABResist = best fits – association (interaction) of serogroup and resistance

Configuration 2 SeroGrp*PrePost = best fits – association (interaction) of serogroup and pre- post AD, but is conditioned by whether it is resistant

Goodness-of-fit Summary Statistics

Statistic Chi-Sq DF P
Pearson 6.91 5 0.2276
Likelihood 8.67 5 0.1230
Freeman-Turkey 8.28 5 0.1416

Number of Near Zero Expected Cells     4

Three observations were made:

      • a serotype may become more resistant as it goes through the AD
      • a serotype may become less resistant, or
      • a serotype may not survive.

Authors

J. H. Harrison – Livestock Nutrient Management Specialist, Department of Animal Sciences, Washington State University Puyallup Research and Extension Center
jhharrison@wsu.edu

Additional Authors

J. Gay – Department of Veterinary Clinical Medicine, Washington State University, Pullman, WA
R. McClannahan – Facility Manager – Integrated Research and Innovation Center – University of Idaho, Moscow, ID
E. Whitefield – Research and Outreach Specialist Department of Animal Sciences, Washington State University Puyallup Research and Extension Center

References

Aitken M. D., M. D.Sobsey, M. D., N. A.Van Abel, K. E.Blauth, D. R.Singleton, P. L.Crunk, C.Nichols, G. W.Walters, and M.Schneider. 2007. Inactivation of Escherichia coli O157:H7 during thermophilic anaerobic digestion of manure from dairy cattle. Water Res. 41:1659-1666. doi:10.1016/j.watres.2007.01.034.

Chiapetta, H., Harrison, J. H., Gay, J., McClanahan, R., Whitefield, E., Evermann, J., Nennich, T., Gamroth, M. (2019). Reduction of pathogens in bovine manure in three full scale commercial anaerobic digesters. Water, Air, and Soil Pollution, 230:111.

Frear C., W.Liao, T.Ewing, and S.Chen. 2011. Evaluation of co-digestion at a commercial dairy anaerobic digester. Clean—Soil, Air, Water. 39:697-704. doi:10.1002/clen.201000316.

Guan T. Y., and R. A.Holley. 2003. Pathogen survival in swine manure environments and transmission of human enteric illness—a review. J. Environ. Qual. 32:383-392.

Manyi-Loh C. E., S. N.Manphweli, E. L.Meyer, A. I.Okoh, G.Makaka, and M.Simon. 2014. Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester). Int. J. Environ. Res. Public Health. 11:7184-7194. doi:10.3390/ijerph110707184.

Pandey P. K., and M.L.Soupir. 2011. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic, and thermophilic temperatures. AMB Express. 1:18. doi:10.1186/2191-0855-1-18.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2022. Title of presentation. Waste to Worth. Oregon, OH. April 18-22, 2022. URL of this page. Accessed on: today’s date.

Reduction and fate of manure pathogens and antimicrobial resistance

Antimicrobial resistance is a complex issue as it is comprised of not only pathogenic bacteria, but also non-pathogens which share genes within complex environmental systems, such as agricultural fields. This webinar describes potential measures to reduce pathogen and antimicrobial resistance in manure as well as potential fate and transport of manure pathogens and antimicrobial resistance following land application of manure. This presentation was originally broadcast on May 17, 2019. More… Continue reading “Reduction and fate of manure pathogens and antimicrobial resistance”

Poultry Mortality Freezer Units: Better BMP, Better Biosecurity, Better Bottom Line.

Proceedings Home | W2W Home w2w17 logo

Purpose

Why Tackle Mortality Management?  It’s Ripe for Revolution.

The poultry industry has enjoyed a long run of technological and scientific advancements that have led to improvements in quality and efficiency.  To ensure its hard-won prosperity continues into the future, the industry has rightly shifted its focus to sustainability.  For example, much money and effort has been expended on developing better management methods and alternative uses/destinations for poultry litter.

In contrast, little effort or money has been expended to improve routine mortality management – arguably one of the most critical aspects of every poultry operation.  In many poultry producing areas of the country, mortality management methods have not changed in decades – not since the industry was forced to shift from the longstanding practice of pit burial.  Often that shift was to composting (with mixed results at best).  For several reasons – improved biosecurity being the most important/immediate – it’s time that the industry shift again.

The shift, however, doesn’t require reinventing the wheel, i.e., mortality management can be revolutionized without developing anything revolutionary.  In fact, the mortality management practice of the future owes its existence in part to a technology that was patented exactly 20 years ago by Tyson Foods – large freezer containers designed for storing routine/daily mortality on each individual farm until the containers are later emptied and the material is hauled off the farm for disposal.

Despite having been around for two decades, the practice of using on-farm freezer units has received almost no attention.  Little has been done to promote the practice or to study or improve on the original concept, which is a shame given the increasing focus on two of its biggest advantages – biosecurity and nutrient management.

Dusting off this old BMP for a closer look has been the focus of our work – and with promising results.  The benefits of hitting the reset button on this practice couldn’t be more clear:

  1. Greatly improved biosecurity for the individual grower when compared to traditional composting;
  2. Improved biosecurity for the entire industry as more individual farms switch from composting to freezing, reducing the likelihood of wider outbreaks;
  3. Reduced operational costs for the individual poultry farm as compared to more labor-intensive practices, such as composting;
  4. Greatly reduced environmental impact as compared to other BMPs that require land application as a second step, including composting, bio-digestion and incineration; and
  5. Improved quality of life for the grower, the grower’s family and the grower’s neighbors when compared to other BMPs, such as composting and incineration.

What Did We Do?

We basically took a fresh look at all aspects of this “old” BMP, and shared our findings with various audiences.

That work included:

  1. Direct testing with our own equipment on our own poultry farm regarding
    1. Farm visitation by animals and other disease vectors,
    2. Freezer unit capacity,
    3. Power consumption, and
    4. Operational/maintenance aspects;
  2. Field trials on two pilot project farms over two years regarding
    1. Freezer unit capacity
    2. Quality of life issues for growers and neighbors,
    3. Farm visitation by animals and other disease vectors,
    4. Operational and collection/hauling aspects;
  3. Performing literature reviews and interviews regarding
    1. Farm visitation by animals and other disease vectors
    2. Pathogen/disease transmission,
    3. Biosecurity measures
    4. Nutrient management comparisons
    5. Quality of life issues for growers and neighbors
  4. Ensuring the results of the above topics/tests were communicated to
    1. Growers
    2. Integrators
    3. Legislators
    4. Environmental groups
    5. Funding agencies (state and federal)
    6. Veterinary agencies (state and federal)

What Have We Learned?

The breadth of the work at times limited the depth of any one topic’s exploration, but here is an overview of our findings:

  1. Direct testing with our own equipment on our own poultry farm regarding
    1. Farm visitation by animals and other disease vectors
      1. Farm visitation by scavenger animals, including buzzards/vultures, raccoons, foxes and feral cats, that previously dined in the composting shed daily slowly decreased and then stopped entirely about three weeks after the farm converted to freezer units.
      2. The fly population was dramatically reduced after the farm converted from composting to freezer units.  [Reduction was estimated at 80%-90%.]
    2. Freezer unit capacity
      1. The test units were carefully filled on a daily basis to replicate the size and amount of deadstock generated over the course of a full farm’s grow-out cycle.
      2. The capacity tests were repeated over several flocks to ensure we had accurate numbers for creating a capacity calculator/matrix, which has since been adopted by the USDA’s Natural Resources Conservation Service to determine the correct number of units per farm based on flock size and finish bird weight (or number of grow-out days) in connection with the agency’s cost-share program.
    3. Power consumption
      1. Power consumption was recorded daily over several flocks and under several conditions, e.g., during all four seasons and under cover versus outside and unprotected from the elements.
      2. Energy costs were higher for uncovered units and obviously varied depending on the season, but the average cost to power one unit is only 90 cents a day.  The total cost of power for the average farm (all four units) is only $92 per flock.  (See additional information for supporting documentation and charts.)
    4. Operational/maintenance aspects;
      1. It was determined that the benefits of installing the units under cover (e.g., inside a small shed or retrofitted bin composter) with a winch system to assist with emptying the units greatly outweighed the additional infrastructure costs.
      2. This greatly reduced wear and tear on the freezer component of the system during emptying, eliminated clogging of the removable filter component, as well as provided enhanced access to the unit for periodic cleaning/maintenance by a refrigeration professional.
  2. Field trials on two pilot project farms over two years regarding
    1. Freezer unit capacity
      1. After tracking two years of full farm collection/hauling data, we were able to increase the per unit capacity number in the calculator/matrix from 1,500 lbs. to 1,800 lbs., thereby reducing the number of units required per farm to satisfy that farm’s capacity needs.
    2. Quality of life issues for growers and neighbors
      1. Both farms reported improved quality of life, largely thanks to the elimination or reduction of animals, insects and smells associated with composting.
    3. Farm visitation by animals and other disease vectors
      1. Both farms reported elimination or reduction of the scavenging animals and disease-carrying insects commonly associated with composting.
    4. Operational and collection/hauling aspects
      1. With the benefit of two years of actual use in the field, we entirely re-designed the sheds used for housing the freezer units.
      2. The biggest improvements were created by turning the units so they faced each other rather than all lined up side-by-side facing outward.  (See additional information for supporting documentation and diagrams.)  This change then meant that the grower went inside the shed (and out of the elements) to load the units.  This change also provided direct access to the fork pockets, allowing for quicker emptying and replacement with a forklift.
  3. Performing literature reviews and interviews regarding
    1. Farm visitation by animals and other disease vectors
      1. More research confirming the connection between farm visitation by scavenger animals and the use of composting was recently published by the USDA National Wildlife Research Center:
        1. “Certain wildlife species may become habituated to anthropogenically modified habitats, especially those associated with abundant food resources.  Such behavior, at least in the context of multiple farms, could facilitate the movement of IAV from farm to farm if a mammal were to become infected at one farm and then travel to a second location.  …  As such, the potential intrusion of select peridomestic mammals into poultry facilities should be accounted for in biosecurity plans.”
        2. Root, J. J. et al. When fur and feather occur together: interclass transmission of avian influenza A virus from mammals to birds through common resources. Sci. Rep. 5, 14354; doi:10.1038/ srep14354 (2015) at page 6 (internal citations omitted; emphasis added).
    2. Pathogen/disease transmission,
      1. Animals and insects have long been known to be carriers of dozens of pathogens harmful to poultry – and to people.  Recently, however, the USDA National Wildlife Research Center demonstrated conclusively that mammals are not only carriers – they also can transmit avian influenza virus to birds.
        1. The study’s conclusion is particularly troubling given the number and variety of mammals and other animals that routinely visit composting sheds as demonstrated by our research using a game camera.  These same animals also routinely visit nearby waterways and other poultry farms increasing the likelihood of cross-contamination, as explained in this the video titled Farm Freezer Biosecurity Benefits.
        2. “When wildlife and poultry interact and both can carry and spread a potentially damaging agricultural pathogen, it’s cause for concern,” said research wildlife biologist Dr. Jeff Root, one of several researchers from the National Wildlife Research Center, part of the USDA-APHIS Wildlife Services program, studying the role wild mammals may play in the spread of avian influenza viruses.
    3. Biosecurity measures
      1. Every day the grower collects routine mortality and stores it inside large freezer units. After the broiler flock is caught and processed, but before the next flock is started – i.e. when no live birds are present,  a customized truck and forklift empty the freezer units and hauls away the deadstock.  During this 10- to 20- day window between flocks biosecurity is relaxed and dozens of visitors (feed trucks, litter brokers, mortality collection) are on site in preparation for the next flock.
        1. “Access will change after a production cycle,” according to a biosecurity best practices document (enclosed) from Iowa State University. “Empty buildings are temporarily considered outside of the [protected area and even] the Line of Separation is temporarily removed because there are no birds in the barn.”
    4. Nutrient management comparisons
      1. Research provided by retired extension agent Bud Malone (enclosed) provided us with the opportunity to calculate nitrogen and phosphorous numbers for on-farm mortality, and therefore, the amount of those nutrients that can be diverted from land application through the use of freezer units instead of composting.
      2. The research (contained in an enclosed presentation) also provided a comparison of the cost-effectiveness of various nutrient management BMPs – and a finding that freezing and recycling is about 90% more efficient than the average of all other ag BMPs in reducing phosphorous.
    5. Quality of life issues for growers and neighbors
      1. Local and county governments in several states have been compiling a lot of research on the various approaches for ensuring farmers and their residential neighbors can coexist peacefully.
      2. Many of the complaints have focused on the unwanted scavenger animals, including buzzards/vultures, raccoons, foxes and feral cats, as well as the smells associated with composting.
      3. The concept of utilizing sealed freezer collection units to eliminate the smells and animals associated with composting is being considered by some government agencies as an alternative to instituting deeper and deeper setbacks from property lines, which make farming operations more difficult and costly.

Future Plans

We see more work on three fronts:

  • First, we’ll continue to do monitoring and testing locally so that we may add another year or two of data to the time frames utilized initially.
  • Second, we are actively working to develop new more profitable uses for the deadstock (alternatives to rendering) that could one day further reduce the cost of mortality management for the grower.
  • Lastly, as two of the biggest advantages of this practice – biosecurity and nutrient management – garner more attention nationwide, our hope would be to see more thorough university-level research into each of the otherwise disparate topics that we were forced to cobble together to develop a broad, initial understanding of this BMP.

Corresponding author (name, title, affiliation)

Victor Clark, Co-Founder & Vice President, Legal and Government Affairs, Farm Freezers LLC and Greener Solutions LLC

Corresponding author email address

victor@farmfreezers.com

Other Authors

Terry Baker, Co-Founder & President, Farm Freezers LLC and Greener Solutions LLC

Additional Information

https://rendermagazine.com/wp-content/uploads/2019/07/Render_Oct16.pdf

Farm Freezer Biosecurity Benefits

One Night in a Composting Shed

www.farmfreezers.com

Transmission Pathways

Avian flu conditions still evolving (editorial)

USDA NRCS Conservation fact sheet Poultry Freezers

Nature.com When fur and feather occur together: interclass transmission of avian influenza A virus from mammals to birds through common resources

How Does It Work? (on-farm freezing)

Influenza infections in wild raccoons (CDC)

Collection Shed Unit specifications

Collection Unit specifications

Freezing vs Composting for Biosecurity (Render magazine)

Manure and spent litter management: HPAI biosecurity (Iowa State University)

Acknowledgements

Bud Malone, retired University of Delaware Extension poultry specialist and owner of Malone Poultry Consulting

Bill Brown, University of Delaware Extension poultry specialist, poultry grower and Delmarva Poultry Industry board member

Delaware Department of Agriculture

Delaware Nutrient Management Commission

Delaware Office of the Natural Resources Conservation Service

Maryland Office of the Natural Resources Conservation Service

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Livestock GRACEnet

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Abstract

Livestock GRACEnet is a United States Department of Agriculture, Agricultural Research Service working group focused on atmospheric emissions from livestock production in the USA. The working group presently has 24 scientists from 13 locations covering the major animal production systems in the USA (dairy, beef, swine, and poultry). The mission of Livestock GRACEnet is to lead the development of management practices that reduce greenhouse gas, ammonia, and other emissions and provide a sound scientific basis for accurate measurement and modeling of emissions from livestock agriculture. The working group fosters collaboration among fellow scientists and stakeholders to identify and develop appropriate management practices; supports the needs of policy makers and regulators for consistent, accurate data and information; fosters scientific transparency and rigor and transfers new knowledge efficiently to stakeholders and the scientific community.  Success in the group’s mission will help ensure the economic viability of the livestock industry, improve vitality and quality of life in rural areas, and provide beneficial environmental services. Some of the research highlights of the group are provided as examples of current work within Livestock GRACEnet. These include efforts aimed at improving emissions inventories, developing mitigation strategies, improving process-based models for estimating emissions, and producing fact sheets to inform producers about successful management practices that can be put to use now.

Why Was GRACEnet Created?

The mission of Livestock GRACEnet is to lead the development of livestock management practices to reduce greenhouse gas, ammonia, and other emissions and to provide a sound scientific basis for accurate measurement and modeling of emissions.

What Did We Do?

The Livestock GRACEnet group is comprised of 24 scientists from 13 USDA-ARS locations researching the effects of livestock production on emissions and air quality.

Our goals are to:

  • Collaborate with fellow scientists and stakeholders to identify and develop appropriate management practices
  • Support the needs of policy makers and regulators for consistent, accurate data and information
  • Foster scientific transparency and rigor
  • Transfer new knowledge efficiently to stakeholders and the scientific community

Success in our mission will help to ensure the economic viability of the livestock industry, vitality and quality of life in rural areas, and provide environmental services benefits.

Authors

April Leytem, Research Soil Scientist, USDA-ARS april.leytem@ars.usda.gov

Additional Information

https://www.ars.usda.gov/anrds/gracenet/livestock-gracenet/

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Mortality Composting in the Semi-Arid West

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings….

Why Is Proper Mortality Management Important?

Proper management of animal mortalities has important implications for nutrient management, water quality, animal health, and farm/ranch family and public health.  To best ensure human health and safety, reduce regulatory risks, and protect environmental resources, livestock producers should become familiar with best management practices (BMPs) for dealing with dead animals. Producers should also be aware of state laws related to proper disposal or processing of mortalities. 

Mortality composting is an increasingly popular and viable alternative when compared to other disposal practices because of cost savings, bio-security benefits, and reduced environmental risks.  Static mortality composting differs from traditional composting in both management intervals and carbon to nitrogen ratios.   The objective of this workshop is to provide those who advise livestock producers with the knowledge, tools, and resources to develop a mortality management plan, with specific focus on the static composting option.   

The Rocky Mountain based authors conducted demonstrated research, reviewed pertinent literature, studied USDA-NRCS standards, and documented mortality composting systems already in-use by regional producers. 

Recording of the author’s presenting the workshop
Options for managing dead animals
Principles of mortality composting
Managing animal mortality compost piles
Economics of mortality composting

Curriculum Materials

Data from these activities provided a basis for the following tools:

  1. Decision aid spreadsheet that evaluates the costs of mortality composting against other mortality disposal options (in English and Spanish),
  2. How-to-manual on mortality composting in English and Spanish),
  3. Video illustrating on-the-ground mortality composting
  4. PowerPoint presentation explaining mortality composting principles, methods and resources (in English and Spanish).

Learning Objectives

This 90 minute in-service workshop will provide background and step-by-step considerations for mortality composting, with an emphasis on the practice in the semi-arid environments of the western United States.  However, fundamentals of the workshop will apply to all climates.   To the right, you will find recordings of the authors presenting the workshop using the slides from the curriculum materials.

Presenters

Thomas Bass, Livestock Environment Associate Specialist, Montana State University tmbass@montana.edu. Mr. Bass has been an Extension Specialist in the area of livestock and environmental management for 12 years.  He has been involved in composting research and demonstrations for much of his career. 

Jessica Davis, PhD, Colorado State University.  Dr. Davis is an Extension Specialist and the director of the Institute for Livestock and the Environment, a diverse group of CSU faculty working together to solve problems at the interface of livestock production and environmental management. She is the principal investigator and originator of this SARE project.    

John Deering, MS, Colorado State University.  Mr. Deering, is a regional Extension Specialist in Eastern Colorado.  He is an economist by training with an emphasis on agriculture and business management.  He developed the economic tools and narratives associated with the products of this project.

Michael Fisher, MS, Colorado State Univeristy.  Mr. Fisher is an area Extension Agent, with an emphasis in livestock production, meat science, range management, and overall ranch management.  He is an important conduit between producers, other government agencies, and industry groups in north eastern Colorado.      

Additional Information

This project was funded by the Western Region Sustainable Agriculture Research and Education (SARE) program.

Archive webcast: https://connect.extension.iastate.edu/p93vve55l1f/?launcher=false&fcsContent=true&pbMode=normal

Curriculum Materials

Companion Video: https://www.youtube.com/watch?list=PL62C6899F81B769B7&v=1DwUrOxpTxw&feature=player_detailpage

Manual (eng): http://livestockandenvironment.org/wp-content/uploads/2012/02/CompostingManual-final-webview.pdf

Manual (span): http://livestockandenvironment.org/wp-content/uploads/2011/03/CompostingManual_spanish_web-2.pdf

Ppt: https://extension.colostate.edu/docs/pubs/ag/mortality.pdf

Ppt (span): http://livestockandenvironment.org/wp-content/uploads/2011/03/Mortality-Spanish.pptx

Partial Budget: http://livestockandenvironment.org/wp-content/uploads/2011/03/Partial-Budget-Form-English.xls

Partial Budget (span): http://livestockandenvironment.org/wp-content/uploads/2011/03/Partial-Budget-Form-Spanish.xls

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.