Fencing To Limit Horses Access to Riparian Areas

Why Limit Horse Access to Water Bodies?

Fencing along stream banks, lakes, and wetlands (riparian areas) is important in order to limit the access horses have to the waterways. When horses area allowed free access to riparian zones, they can deposit manure on the bank or directly in the water. Horse manure may cause elevated levels of nutrients and/or microbes in water. This will be of particular concern in water bodies that are classified as impaired.

Buffer Zone

The area between the horses and the water is called a buffer zone because it buffers the water from the effects of animals. The purpose is to collect any sediment from the pastures before it runs off into the waterway. The distance that should separate the animals from the water depends on several factors including, soil type, slope steepness, and condition of the pasture.

What Type of Fencing Should Be Used?

There are many types of fencing that can be used. Your choice will depend on the potential safety concerns for animals and people, cost of the materials, equipment needed to install the fencing and the maintenance requirements.

The Natural Resource Conservation Service has guidelines that can be used for determining how and where stream bank fences should be implemented. The NRCS Field Office Technical Guide provides technical information on stream bank fencing.

Fencing

Additional Information on Horse Manure Management

Author: Michael Westendorf, Rutgers, The State University of New Jersey

Common Manure Test Results Conversions

When developing your manure nutrient management plan, getting a good sample and receiving your manure test results is only the first step. After you get your test results, you need to ensure that the units (pounds, gallons, etc.) in the report match the units that are used in your plan. When they do not match, how can you make the conversions?

Note: Phosphorus is used in these examples, but the calculations are the same for all nutrients.

Converting Dry Matter to “As-Is”

There are two formulas for converting manure analyses results from % dry-weight (% dwt) or ppm to “as-is” results. One is used when your analysis is expressed in lb/ton and the other is for lb/1000 gal.

lb/ton as sampled = (% Solids/100) x (% Analysis dwt/1001) x 2000 lb/ton

 

lb/1000 gal = (% Solids/100) x (% Analysis dwt/1001) x (density2 lb/gal x 1000)

1For results in ppm replace 100 with 1,000,000
2To do this the density of the manure must be known. Liquid manure density can vary from 8-9 lb/gal, but will typically have a density around 8.3 to 8.5 lb/gal. Manure density can be easily estimated with a 5 gallon bucket and a set of scales. See estimating manure density.

Examples

A. Manure Analysis: 10.5% solids, 1.4% P dwt

(10.5% solids/100) x (1.4% P/100) x 2000 = 2.9 lb P/ton

B. Manure Analysis: 10.5% solids, 14,000 ppm P dwt, Manure density 8.3 lb/gal

(10.5% solids/100) x (14,000 ppm P/1,000,000) x (8.3 lb/gal x 1000 gal) = 12.2 lb P/1000 gal

Converting Manure Analysis Results From Elemental to Oxide

Standard Conversion Factors: P x 2.3 = P2O5; K x 1.2 = K2O

Examples

A. Manure Analysis: 2.9 lb P/ton

2.9 lb P/ton x 2.3 = 6.7 lb P2O5/ton

B. Manure Analysis: 12.2 lb P/1000 gal

12.2 lb P/1000 gal x 2.3 = 28.1 lb P2O5/1000 gal

Converting Manure Analysis Results from Liquid to Solid Or Solid to Liquid

To do this the density of the manure must be known. Liquid manure density usually varies from 8-9 lb/gal. Manure density can be easily estimated with a 5 gallon bucket and a set of scales. Liquid manures typically have a density around 8.3 to 8.5 lb/gal. Estimating Manure Density.

lb/ton = lb/1000 gal ÷ (density lb/gal x 1000) x 2000 lb/ton

OR

lb/1000gal = lb/ton x (density lb/gal x 1000) ÷ 2000

Examples

A. Manure Analysis: 28.1 lb P2O5 /1000 gal , Manure density estimated at 8.3 lb/gal

28.1 lb P2O5 /1000 gal ÷ (8.3 lb/gal x 1000) x 2000 = 6.7 lb P2O5 /ton

B. Manure Analysis: 6.7 lb P2O5 /ton , Manure density estimated at 8.3 lb/gal

6.7 lb P2O5 /ton x (8.3 lb/gal x 1000) ÷ 2000 = 28.1 lb P2O5 /1000 gal

Related Manure Testing Web Pages

Authors: Doug Beegle, Pennsylvania State University and John Peters, University of Wisconsin

Spreading Manure on Horse Farms

Equipment For Handling and Applying Manure On Small Farms

A tractor and a manure spreader are needed to ensure proper field application of stored manure. Some small farms may be able to utilize small ground-drive spreaders that can be pulled behind an all-terrain vehicle or pickup instead of a tractor. Pull-type spreaders are traditionally used, although truck-mounted spreaders are sometimes used on larger farms.

Solid manure can be removed from storage using front-end loaders, scrapers, or other handling equipment. Small or limited-resource farms can get by with equipment as simple as a wheelbarrow and pitch fork. The size of the equipment influences the time required to load, haul, and spread manure. For more information see Nutrient Planning on Small Farms.

Environmental Considerations When Spreading Manure

Manure should not be spread where and when there is any risk for water pollution, such as near streams, ponds, wells or other waterbodies. Your local soil and water conservation district or Natural Resources Conservation Service office can also help identify if additional special protection areas exist on farmland and bordering properties.

Stored manure should be applied to the soil in a thin layer to speed drying and discourage fly breeding. Spreading incompletely composted manure on horse pastures should be avoided due to the risk of infecting pastures with internal parasites. Manure should be spread at agronomic rates (rates equal to or less than plants will use in a year). When stockpiled manure is spread on crop fields, the application may not meet the total needs of the crop. Each source of horse manure will vary, especially when different bedding sources are used. Typically, a ton of horse manure will contain eleven pounds of nitrogen, two pounds of phosphorous, and eight pounds of potassium. Average values are given in the table below and can help to determine the number of acres needed to properly apply the horse manure. Refer to your local Cooperative Extension office to get a list of laboratories that will do manure analysis.

Nutrient Content of Horse Manure
Manure Percent Solids Nitrogen – N Phosphorus – P2O5 Potassium – K2O
(tons/year) % (lb./year) (lb./year) (lb./year)
9.1 22.0 102 40 84

When Should Manure Be Land Applied?

Spring is the preferred time to apply manure. Forage or hay crops generally provide the greatest flexibility in planning land application operations. Cool season grasses can generally utilize manure nutrients from early spring to late fall, and application equipment generally does not adversely affect the crop regardless of its growth stage. However, spreading manure on wet soils should be discouraged as it leads to soil compaction and tearing of the top soil.

Manure Nutrient Availability

When spread, not all nutrients in manure are immediately available for plant use. The amount of nitrogen available is a function of the percentage of nitrogen in the manure, whether or not it is incorporated in the soil, and the rate of organic matter decomposition of the manure. Nitrogen availability (during the first growing season) will range from 35% of the total nitrogen when manure is spread on the soil surface to 60% when immediately incorporated into the soil. Availabilities of phosphorus from phosphate (P2O5) and potassium from potash (K2O) are commonly set at 80% and 90% of totals, respectively. For links to publications that include more detailed information and formulas for estimating nutrient availability from manure see Manure Nutrient Management Educational and Informational Resources.

Manure Containing Wood Shavings or Sawdust May Require Additional Management

Horse manure often has an additional consideration when it comes to nutrient availability. Sawdust or wood shavings are high-carbon materials that require a great deal of nitrogen to break down. This process can tie up available nitrogen, rendering it unavailable to plants or crops. A fact sheet on how to manage horse manure that contains wood shavings or sawdust is Horse Manure Management: The Nitrogen Enhancement System.

Too Much Manure?

In situations where land application is not an option or the farm has more manure than can be appropriately utilized, the producer will need to consider Off-Farm Manure Disposal options.

Additional Information

Author: Michael Westendorf, Department of Animal Sciences, Rutgers, The State University of New Jersey

Manure and Compost Utilization on Fruit and Vegetable Crops

Manure Handling and Field Application

Livestock manure can be a valuable source of nutrients, but it also can be a source of human pathogens if not managed correctly. Organic certification programs currently include strict requirements on the handling of raw manure. Even though these requirements are designed to minimize environmental risks, it is important that all farms using manure follow good agricultural practices to reduce any microbial risk that may exist.

Proper and thorough composting of manure, incorporating it into soil prior to planting, and avoiding top-dressing of plants are important steps toward reducing the risk of microbial contamination.

Plan Before Planting

  • Select site for produce based on land history and location
  • Use careful manure handling (see recommended practices listed below)
  • Keep good records. Consider the source, storage, and type of manure being used on the farm
  • Store manure as far away as practical from areas where fresh produce is grown and handled. If manure is not composted, age the manure to be applied to produce fields for at least six months prior to application. Where possible, erect physical barriers or wind barriers to prevent runoff and wind drift of manure onto plants.
  • Store manure slurry for at least 60 days in the summer and 90 days in the winter before applying to fields.
  • Actively compost manure. High temperatures achieved by a well-managed, aerobic compost can kill most harmful pathogens. Remember to optimize temperature, turning, and time to produce high quality, stable compost.

Cover crops and injection methods lend themselves well to both incorporate the nutrients well ahead of the time of planting fruits and vegetables but to also decrease runoff of manure applications. Photo by N. Rector, Michigan State University Extension.

Plan Manure Application Timing Carefully

  • Apply manure in the fall or at the end of the season to all planned vegetable ground or fruit acreage, preferably when soils are warm, non saturated, and cover-cropped.
  • If applying manure in the spring (or the start of a season), spread the manure two weeks before planting, preferably to grain or forage crops.
  • DO NOT harvest vegetables or fruits until 120 days after manure application.
  • Remember to document rates, dates, and locations of manure applications. Incorporate manure into the soil
  • Incorporate manure immediately after application. Although it is known that many harmful pathogens do not survive long in the soil, research is still needed on soil microbes and pathogen interactions. Some pathogens, such as Listeria monocytogenes, may survive and grow in the soil.
  • If it is necessary to apply manure or slurry to vegetable or fruit ground, incorporate it at least two weeks prior to planting and observe the suggested 120-day pre harvest interval.
  • If the 120-day waiting period is not feasible, such as for short season crops like lettuce or leafy greens, apply only properly composted manure.

Choose appropriate crops

  • Avoid growing root and leafy crops in the year that manure is applied to a field.
  • Apply manure to grain or forage crops.
  • Apply manure to perennial crops in the planting year only. The long period between application and harvest will reduce the risks.

Recommended Reading

Page Manager: Natalie Rector, Michigan State University Extension and Elizabeth A Bihn, Cornell University

Research Summary: Evaluation of a Synthetic Tube Dewatering System for Animal Waste Pollution Control

Research Purpose

The objective of this field study was to evaluate the performance of a Geotube® dewatering system under field conditions by quantifying the mass removal efficiency of solids, nutrients, and metals from well-mixed dairy-lagoon slurry dewatered by this system.

Activities

A Geotube dewatering system was set-up to treat the lagoon slurry mix from the primary lagoon of a 2000-head lactating cow open-lot dairy (Fig. 1). After two synthetic tubes were filled to a height of approximately 1.5 m with the slurry mixture (Fig. 1), the pumping of effluent ceased and tubes were left to dewater for six months. During the pumping of slurry mix into tubes, both alum and polymer were added.

Slurry samples were collected before pumping it into the system (hereafter influent, IF), after mixing it with alum and polymer (hereafter IFCM), and effluent (hereafter EF) samples were collected as it ‘drained’ out of the system. Additionally, residual solids (RS) samples were also collected after both tubes had dewatered for six months. Samples were analyzed for solids, nutrients and metals following EPA and standard analytical methods.

Figure 1. Geotube® dewatering system: before (L) and after (R) filling with effluent.

 

Geotube dewatering system before filling Geotube dewatering system filled


 

 

What We Have Learned

This system effectively removed high percentage of total phosphorus (TP), 97% (Fig. 2) and soluble reactive phosphorus (SRP), 88% (Fig. 3), well above 50% reduction goal set by the phosphorus Total Maximum Daily Loads (TMDLs) for the North Bosque River in east central Texas.

Geotube® also successfully filtered solids (95%) from the lagoon slurry. This system was less effective in removing K (<50%) (Fig. 3), since K is highly soluble.

Geotube® dewatering system successfully reduced Ca, Mn, Fe, and Cu concentration by 91, 60, 99, and 99%, respectively (Fig. 3). However, this system was not highly effective in removing Na (<26%) from dairy lagoon slurry (IF).

Figure 2. Average total phosphorus (TP) concentration at different sampling date

 

Figure 3. Average soluble reactive phosphorus (SRP) concentration at different sampling date.

 

Figure 4. Average % reduction (Rd) and separation efficiency (SE) of effluent constituents using Geotube® dewatering system.


Why is This Important?

Water quality degradation due to phosphorus (P) contribution as a non-point source (NPS) pollutant from effluent and manure applied to waste application fields (WAFs) is a major concern in the Bosque River watershed in east central Texas. Geotube® dewatering system can be used as one of the best management pactices to minimize pollution from dairy effluent to be applied to field, but it must address the disposal of solids and costs.

For More Information

Contact mukhtar@tamu.edu or (979)458-1019. For more information, refer to the following publication.

Mukhtar, S., L. A. Lazenby, S. Rahman. 2007. Evaluation of a synthetic tube dewatering system for animal waste pollution control. Applied Engineering in Agriculture 23(5): 669-675

Authors: Saqib Mukhtar and Shafiqur Rahman, Texas A&M University

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Protocol for Determining the Cost/Benefit of a Manure Storage Lagoon Cover

Do Manure Storage Covers Pay?

A protocol was developed to determine the cost/benefit of installing a cover over a manure storage structure. Included are a discussion on the cost and selection of the cover, a procedure to determine the feasibility of biogas production and capture, the technique to estimate the dilution of the slurry resulting from precipitation, and tools to estimate ammonia emissions, thereby predict the increase in nitrogen content and the savings from reduced fertilizer hauling. By considering the combination of all of these factors, the payback period can be calculated.

Current Activity

The protocol has been developed and a case study was performed. A manuscript is in preparation.

What We Have Learned

Techniques to identify the items that determine the cost and benefit have been researched and refined for the protocol. Based on a sensitivity analysis a crucial benefit is the savings associated with keeping precipitation out of the manure thus avoiding extra hauling costs. As a result, relatively short payback periods can be realized.

Why is This Important

One of the most common practices to store manure is the use of open storage structures. Numerous problems for farmers are created by the open structure including ammonia loss, methane emissions, odor complaints, and increased hauling of manure slurry. Covering a lagoon offers substantial environmental benefits and can save farmers money.

a lagoon cover recently installed on a dairy farm

For More Information

Steve Safferman
Michigan State University
Biosystems Engineering
202 Farrall Hall
East Lansing, MI 48824

This report was prepared for the annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Research Summary: Improving Pasture and Hay-ground with Low-disturbance, Manure Slurry-enriched Seeding

Research Purpose

Many dairy producers in the Great Lakes Region have abandoned year-around confinement feeding and have adopted a form of managed grazing where cattle are on pasture during the growing season and housed during the winter months. Pasture land is often nutrient deficient because crop nutrients are removed in harvested hay early in the growing season when forage supply exceeds grazing demand. Thinning stands are often a problem on a grazing farm, particularly after a dry summer when over-grazing occurs.

The objective of this work was to develop and evaluate a process whereby forage Brassica, grass and legume seed was carried in nutrient rich manure slurry to seeding micro-sites in small grain stubble or established pasture and hay ground. This shallow mixing of the seed-laden slurry increased the species richness, yield and quality of hay and grassland, extended the grazing season, and provided a more complete, balanced feed for grazing stock.

Activities

Slurry seeding was done with a commercially available slurry tanker (3000 gal) equipped with a rear-mounted rolling-tine aerator (Aer-Way) and a SSD (sub-surface deposition) slurry distribution system. The rolling-tine aerator was ground-driven with 8-inch tines on a rotating shaft with 7½ inch spacing between each set of tines. The angle of the rotating shaft was adjustable in 2.5º increments from 0º to 10º degrees relative to the direction of travel. The 0º gang angle provided little soil disturbance while the 10º gang angle provided the most soil loosening.

Seed was mixed directly in the spreader tank and applied with the manure slurry.

Slurry-seeding involved mixing seed in the slurry tank and passing the seed-laden slurry through a rotating chopper/distributor and then through drop tubes to the fractured and loosened soil behind each set of rolling tines. Excess PTO pump capacity provides bypass flow for seed mixing and distribution. Slurry rate calibration is based on tractor engine RPM, travel speed, machine width, and slurry flow rate. A 150 PTO-hp tractor or larger was needed to draw the slurry tank and aeration tool.

Forage rape (Barkant, 6 lb/ac), forage turnip (Pasja, 6 lb/ac), brown mid-rib sorghum-sudan (Sudex, 30 lb/ac) and common oats (64 lb/ac) were sown in untilled wheat stubble on a Capac sandy loam soil on 8 August. Two seeding methods were used: 1) conservation tillage with two passes of a combination tillage tool (12 ft Kongskilde Triple-K, 3-inch tillage depth), and 2) slurry seeding with aeration tillage and seed-laden swine slurry (10 gang angle, 6,000 gal/ac). Fifty lb/ac N as urea was applied to the tilled-and-drilled plots before tillage and planting. No commercial N was applied to the slurry-seeded plots. The sudex and oats were harvested on 21 October and the rape and turnip on 27 October.

Orchard grass (12 lb/ac) and Medium Red Clover (10 lb/ac) were sown in an established brome grass sod using frost, no-till and slurry seeding methods. Frost seedings were done in March. On August 24, the brome grass in one-half of each plot was suppressed with Paraquat dichloride to reduce competition from the existing stand for sunlight and moisture. On August 31, seedings were no-till drilled (Great Plains drill) or slurry seeded (2.5 º gang angle) with 6,000 gal/ac swine manure. No commercial fertilizer was applied to the non-manured plots. Forage yield and quality were evaluated.

What We Have Learned

Slurry seeding late season forages after wheat

The weather was hot and dry in August. The tilled-and-drilled oat stand (43 plants/ft-sq) was significantly greater than the manure slurry-seeded oat stand (24 plants/ft-sq), but there was no difference between the till-and-drilled and slurry-seeded forage rape, forage turnip or sudex stands. Sudex did not establish well with either seeding method. Forage rape and forage turnip yielded greater than sorghum-sudan and oats, but there were no significant differences within a crop due to the seeding method.

Figure 1. Yield of late season grazing crops seeded with swine slurry in untilled wheat ground. Contributed to eXtension cc2.5

Slurry seeding forages in hay ground

Forage yield and quality parameters are under evaluation. Based on preliminary observations:

  • No-till and slurry seeding of red clover in a brome grass sod was more effective than frost seeding in increasing biomass yield and botanical diversity.
  • No-till and slurry seeding of orchard grass in brome grass sod increased botanical diversity but had little effect on biomass yield after the initial N boost. Frost seeding orchard grass had little effect on botanical diversity.
  • The use of a pre-plant burn-down tended to increase weed biomass.
  • The use of a pre-plant burn-down enhanced the inter-seeding of orchard grass, but it did not enhance the stand of red clover.

Forage dry matter yield, Cut 1 2007.

Why is This Important?

Manure slurry-enriched micro-site seeding is an innovative process that combines low disturbance aeration tillage, manure slurry application and the seeding of cover crops in one efficient operation. Manure nutrients collected throughout the winter can be used to meet the nutrient needs of hay and pasture crops but concerns regarding the effect of manure on pasture productivity limit its use. When applied to pasture and hay crop restoration this new process will increase botanical diversity, yield and quality, and provide a more complete, balanced feed for grazing stock. A more complete integration of pasture and manure nutrient management in grass-based systems offers an opportunity to expand the land base for manure application, minimize manure transport costs, improve on-farm nutrient recycling, and improve forage quality and farm profitability.

For More Information

Contact Tim Harrigan, harriga1@msu.edu or 517.353.0767. For more information refer to the following article: Harrigan, T.M., D.R. Mutch and S.S. Snapp. 2006. Slurry-Enriched Seeding of Biosuppressive Covers. Applied Engineering in Agriculture 22(6):827-834.

By Tim Harrigan and Rich Leep, Michigan State University

This report was prepared for the 2008 annual meeting of the regional research committee, S-1032 “Animal Manure and Waste Utilization, Treatment and Nuisance Avoidance for a Sustainable Agriculture”. This report is not peer-reviewed and the author has sole responsibility for the content.

Implementing a Nutrient Management Plan

Why Develop a Nutrient Management Plan?

Developing a nutrient management plan can be a large undertaking. And once it is completed, implementing it puts a livestock producer well on the way to environmental stewardship. A plan may be written for one or more purposes: to satisfy regulatory programs, to qualify for financial assistance or maybe just to gain peace of mind.

The plan should have been developed in close working relationship with the producer, and in so doing, many of the management practices that needed improving will have been worked out and the producer understands the need for the practices and is willing and capable to achieve the items as detailed in the plan. No plan will ever be followed exactly as it was written as weather conditions, soil conditions and market fluctuations create a constant flux for any farming operation. But as these changes arise, the producer who has been involved in the development of the plan is also skilled in how to make changes that continue to be in the spirit of the plan for environmental protection, nutrient accounting and conservation needs. The plan is then teamed up with records that show the plan is either being followed, or documents any deviations.

diagram

Contributed to eXtension CC2.5

Also check out the archived webcast on Improving Implementation of Nutrient Management Plans

Strategic Planning

The planning process needs to include strategic (long term) and tactical (annual) planning. A strategic plan needs to be developed for the whole farm. The strategic plan articulates the policies and guiding principles for the entire farm operation. This type of plan needs to present clear concise statements that reflect the farm’s commitment to conducting operations according to the plan. A good starting point is to create a Whole Farm Nutrient Balance Report This report will provide the farm with a snapshot of the nutrient flows onto and off of the farm. The ideal scenario would be for the nutrients imported onto the farm in feed and fertilizer to be balanced by the nutrients being removed in commodities that are sold off the farm. For farms that have more nutrients than the farm can deal with the options to consider include, reducing purchased inputs (fertilizer and feeds), moving nutrients off the farm, through manure or compost, acquiring more land or reducing animal numbers.

Once the farm knows where it stands with regard to nutrient balance it can begin to formulate the strategy needed to deal with the situation. Farms with too few nutrients or just enough nutrients needed to meet crop requirements can take a straightforward approach to developing a strategic level plan for the farm. In these situations the farm simply needs to commit to making maximum use of the available nutrients by applying the nutrients to a crop field when the field needs the nutrients and at a time of year when the crop can take them up. On the other hand the farm that has too many nutrients has a more complex problem. This farm also needs to apply nutrients to fields needing them when the crop can take them up, but it also needs to develop a strategy to deal with the excess nutrients.

Annual (Tactical) Planning

Plans should be reviewed annually, to see how closely last year’s actions matched the plan, to make any updates to the plan and to project ahead for the next twelve months. This annual update is the time to input any new soil tests, develop the coming crop rotation, document yields, add new fields or delete ones no longer farmed, update animal numbers and incorporate new manure analysis. If major changes are being planned or have occurred, the plan may need significant changes.

These factors will keep the plan current and meaningful. Conceptually, implementing a nutrient management plan can be thought of a cyclical process composed of a series of steps. Due to the continuous nature of farming several of the steps in the cycle may be happening simultaneously, but for clarity we will consider them one at a time. The figure below shows these steps and the cyclical arrangement of their relationship to each other.

There are instances where the annual/tactical plan can be functional for the coming year, but the strategic/long range plan indicates that annual planning will become more difficult each year. For some farms, it may be easy to nitrogen base the plan, but coming into phosphorus balance will be more difficult, or impossible. P-index strategies should be considered a short term solution; but when a farm is generating more phosphorus than it can utilize, eventually, a P-index strategy will lead to over applications of phosphorus and potential concerns in the years to come, especially if regulations and policy tightens nutrient planning in the future. There will be situations where livestock numbers increase on an operation but there is less land base in the neighborhood. Scenarios such as these, point to the importance of considering both the long term and the annual planning process.

Communicating the plan

Implementation of a plan often hinges on communicating the plan to other family members or hired employees. First, the farm owner needs to show, by his/her actions and words, that the plan is important. Next, a system of communications to the farm employees on what they should do to follow the plan and reporting back, by the employees, of what they have done needs to be put in place. If the farm doesn’t place sufficient value on the plan then the workers will have no incentive to follow the plan and it will collect dust on a shelf.

The tactical/annual plan will be a field-by-field, day-by-day, plan that needs to be communicated to the farm employees or family members. For some workers, training may be needed to impart the skills required to farm under the constraints of the plan. For example operators of manure spreading equipment may need to be taught how to adjust tractor gearing or throttle settings to obtain spreading rates as defined in the plan. This section of the plan will require things like:

  • Field 1 needs 2000 gallons of liquid manure applied per acre in the spring.
  • Field 4 needs to be harvested by September 1 in order to establish a cover crop to protect the slope from erosion during winter.
  • Field 25’s soil P levels are above threshold levels, no manure can be applied.
  • Field 6 needs 200 lbs. of potash.

Records of actions

In return, there needs to be a track record of what did occur, noting any changes to the planned activities. Records are critical to the process because they provide the proof that the plan is being adhered to, as well as valuable information to be used in the formulation of the following year’s plan. If your farming practices are questioned by a regulatory agency or an unhappy neighbor, your records may be your only defense.

Nutrient management plans need to be based on realistic yield information. CC 2.5 Rich Meinert.

There are a number of websites that can provide sample record keeping forms and field worksheets that can be used as is or modified to meet the specific needs of the farm. A couple of suggestions to get started are:

Analyze & Evaluate

This section of plan implementation is where crop records get put to use. One needs to analyze the records kept, to determine on a field by field basis how closely the plan was followed. If the records deviate substantially from the plan the farm needs to provide a reason for the deviation. These explanations need to become part of the permanent crop records so that if someone looks back at the crop records he can obtain a clear picture of what happened and why. The farm may have experienced a wet spring and needed to remove manure from storage to avoid a discharge, but the only field that was dry enough to work had already been spread. By determining what happened and why, the farm presents a rationale to outsiders that it is being environmentally responsible.

Evaluation is the final determination of how well the plan worked. After the individual field comparisons are completed, summary information should be calculated to provide a report card on the nutrient management practices as a whole. It is this summary information that can point out the weak points in the plan. For instance, if fields consistently yield less than the yield goal in the plan then adjustments need to be made. If a number of fields are increasing in soil P over time the application rate for manure or fertilizer may need to be lowered to reduce the accumulation of P.

This management information is the hidden benefit of the NMP process. Detailed farm records will allow farms to use input costs, production data, operating costs and revenues to conduct cost/benefit analysis on production practices. This will allow the farm to see which aspects of the operation are helping or hindering profitability.

Another aspect of evaluating a NMP is to do periodic checks on practices and procedures. Farms need to take a proactive approach to quality control in the area of nutrient management. Manure and fertilizer spreader calibrations will change over time. Farm personnel will begin to forget practices and they do not perform the same task in exactly the same way every time. Field conditions can vary due to weather.

For these reasons farms need to conduct periodic spot checks of manure and fertilizer application. Results from these types of measurements can be used to verify how accurately practices are being followed, and will provide a measure of confidence for the accuracy of the farm’s records in the event of a complaint. For example, if a complaint were filed stating that the farm misapplied liquid manure, it would be in the farm’s best interest to not only produce the crop records to show what was applied, but also to show a series of spot check results, that showed that the applications made on the farm that year were accurate to within plus or minus a real number of gallons per acre. Knowing this confidence interval can provide an extra measure of assurance that the farm actually applied what it said it had.

Implementing a nutrient management plan on a farm can be a daunting task. There is a lot of information to be managed. There are decisions to be made and records to be kept. You don’t need to do it all at once. See what specific resources are available in your state and use this web site to provide suggestions that you can tailor to suit your situation. When a plan is written and implemented correctly a farm can learn a lot about itself, and how to position itself to be in business over the long term with a minimal environmental foot print.

Page Manager: Richard Meinert, Extension Educator, University of Connecticut
Reviewers: Rick Koelsch, University of Nebraska and Doug Beegle, Pennsylvania State University

Solid Manure Sampling Procedures

Developing a nutrient management plan depends on testing manure for nutrient content. Your manure test results are only as good as your sample. This page outlines recommended ways to sample solid manure from open feedlots.

Sample During Loading

The recommended sampling for solid manure is to sample while loading the spreader. Sampling the manure pack in a barn directly has been shown to result in very variable results and is not recommended. Take at least 5 samples during the process of loading several spreader loads and save them in a bucket. When all of the samples are collected, thoroughly mix the samples and take a subsample from this to fill the lab manure test container.

Sample Manure During Spreading

Spread a tarp or sheet of plastic in the field and spread manure over this with the manure spreader. Do this in several locations and with several loads of manure. Collect the manure from the tarp or plastic sheet in a bucket. Mix the manure collected from different locations and spreaders, and take a subsample from this to fill the lab manure test container. This procedure is usually only practical for more solid manures.

Photo courtesy USDA NRCS

Sampling Daily Haul Manure

Place a 5 gallon bucket under the barn cleaner 4 or 5 times while loading the spreader. When all of the samples are collected, thoroughly mix the samples and take a subsample from this to fill the lab manure test container. Repeat this several times throughout the year to determine variability over time.

Sampling Manure in a Poultry House

Collect 8-10 samples from throughout the house to the depth of the litter to be removed. Samples near feeders and waterers can be very different. Collect samples from these areas proportional to the space they occupy in the house. When all of the samples are collected, thoroughly mix the samples and take a subsample from this to fill the lab manure test container. A sample taken while loading the spreader or during spreading is likely to be a more representative sample.

Sampling Stockpiled Litter

Take 10 samples from different locations around the pile at least 18 inches below the surface. When all of the samples are collected, thoroughly mix the samples and take a subsample from this to fill the lab manure test container. Large diameter auger bit and portable drill or soil sampler can be used to access manure deep within pile.

Taking a sample from a manure stockpile Taking representative sample from all subsamples mixed together in a bucket

Sampling stockpiled manure. Picture Source: Manure Testing for Nutrient Content

Sampling Manure from an Open Lot

These videos were produced by the Iowa Learning Farms project.

Sampling Stockpiled and Composted Manure

Related Web Pages

Overview of Manure Testing

Page Authors: Douglas Beegle, Penn State University and John Peters, University of Wisconsin

Estimating Manure Density

Livestock and Poultry Environmental Learning Center:

Home Page

All articles about:

Nutrient Management

Manure Testing

Manure Testing

Procedure for Estimating Manure Density

Manure density varies with moisture content primarily depending on the amount of bedding. To calculate a more accurate estimate of manure density, use the procedure below:

  1. Weigh an empty 5-gallon bucket. Record the weight in pounds.
  2. Fill the 5-gallon bucket with a typical sample of the manure and weigh the bucket and manure. Record the weight in pounds.
  3. Subtract the weight of the empty bucket (step 1) from the weight of the bucket with manure (step 2). Record the weight of the manure in pounds.
  4. Repeat steps 2 and 3 at least 5 times and calculate an average weight. Record the average weight in pounds.
  5. Divide the average weight by 5 to determine the density in pounds per gallon. OR
  6. Multiply the average weight by 1.5 to determine the density in pounds per cubic foot.

Related Web Pages