Environmental Sustainability of Beef


Proceedings Home W2W Home w2w17 logo

Purpose 

In recent years, there has been negative publicity in the media related to the sustainability of beef. In response, there has been a demand from within and outside of the industry for a scientific study to quantify the sustainability of beef over its full life cycle. This type of request has been given to many of the major food commodities, so a number of sustainability studies are underway or complete. Beef is one of the most complex systems though for this type of analysis. This beef industry life cycle assessment (LCA) is being conducted to establish benchmarks in various measures of sustainability and to identify opportunities for improvement. These types of analyses are important to promote consumer confidence in our food products.

What did we do? 

A national assessment of the sustainability of beef is being conducted in collaboration with the National Cattlemen’s Beef Association through the support of the Beef Checkoff. This includes surveys and visits to cattle operations throughout the U.S. to gather production information. With this information, representative production systems are being modeled and evaluated through a cradle-to-farm gate LCA. So far, the environmental impacts of representative production systems have been evaluated for 5 of 7 geographic regions including the Southern Plains, Northern Plains, Midwest, Northwest and Southwest. To complete the full LCA, post-farm gate data were obtained from harvesting and case-ready facilities, retailers, and restaurants while consumer data were obtained from literature and public databases. These data were combined to quantify sustainability through a full cradle – to – grave life cycle assessment.

What have we learned? 

Preliminary LCA results have been obtained using the farm gate and post farm gate information obtained thus far. The environmental impacts of cattle production systems vary widely, with more variation within regions than among regions. For individual production systems, total greenhouse gas emissions (carbon footprint) ranges from 17 to 36 kg CO2e/kg carcass weight (CW) with regional means around 20 kg CO2e/kg CW. Regional values for fossil energy use, non-precipitation water use and reactive nitrogen loss are 40-50 MJ/kg CW, 400-6500 l/kg CW and 120-180 g N/kg CW, respectively. To assess the full life cycle of beef, the BASF eco-efficiency analysis methodology is used with the functional unit or consumer benefit being 0.45 kg (1 lb) of consumed boneless edible beef. The full life cycle carbon footprint of beef is 43-50 kg CO2e/kg of consumed beef with about 85% of this footprint related to cattle production, 10% related to the consumer and l! ess than 5% related to processing, packaging, transport and retail. Other impact metrics include water emissions, cumulative energy demand, land use, acidification potential, photochemical ozone creation potential, ozone depletion potential, abiotic depletion potential, consumptive water use, and solid waste disposal. An initial assessment indicates that feed and cattle production phases are the largest contributors to most of these environmental impact categories. Eco-efficiency improvements are being made in cattle production through increased crop yields and more efficient use of resource inputs such as fertilizer and feed. Beneficial improvements among processors include increased use of natural gas in lieu of fuel oil, biogas capture and use from wastewater lagoons at harvesting plants, packaging optimizations, and improvements in water use efficiency. This LCA is the first of its kind for beef and has been third party verified in accordance with ISO 14040:2006 and 14044:2006 a! nd 14045: 2012 standards.

Future Plans   

Surveys, visits and farm gate analyses will be completed this year for the Southeast and Northeast regions. All of the regional data will then be used along with expanded data from post farm gate processes to form the full national LCA. The national LCA will be completed in collaboration with the University of Arkansas using the SimaPro LCA software.

Corresponding author, title, and affiliation       

C. Alan Rotz, Agricultural Engineer, USDA/Agricultural Research Service

Corresponding author email  

al.rotz@ars.usda.gov

Other authors  

Senorpe Asem-Hiablie, Agricultural Engineer, USDA/ARS;Tom Batttagliese, Global Sustainability Metrics Manager, BASF Corporation; Kim Stackhouse-Lawson, Director of Sustainability, JBS USA (Formerly with the National Cattlemen’s Association)

Additional information 

Asem-Hiablie, S., C.A. Rotz, J. Dillon, R. Stout and K. Stackhouse-Lawson. 2015. Management characteristics of cow-calf, stocker, and finishing operations in Kansas, Oklahoma and Texas. Prof. Anim. Scientist 31:1-10.

Asem-Hiablie, S., C.A. Rotz, R. Stout and K. Stackhouse-Lawson. 2016. Management characteristics of beef cattle production in the Northern Plains and Midwest regions of the United States. Prof. Anim. Scientist 32(6):736-749.

Asem-Hiablie, S., C.A. Rotz and R. Stout. 2016. Characteristics of beef cattle operations in the Midwest. Beefacts, National Cattlemen’s Beef Association, Centennial, CO.

Asem-Hiablie, S., C.A. Rotz and R. Stout. 2016. Characteristics of beef cattle operations in the Northern Plains. Beefacts, National Cattlemen’s Beef Association, Centennial, CO.

Rotz, C.A., S. Asem-Hiablie, J. Dillon and H. Bonifacio. 2015. Cradle-to-farm gate environmental footprints of beef cattle production in Kansas, Oklahoma, and Texas. J. Anim. Sci. 93:2509-2519.

Rotz, C.A., B.J. Isenberg, K.R. Stackhouse-Lawson, and J. Pollak. 2013. A simulation-based approach for evaluating and comparing the environmental footprints of beef production systems. J. Animal Sci. 91:5427-5437. 2013.

Acknowledgements      

Funded in part by The Beef Checkoff and the USDA’s Agricultural Research Service. The authors thank Kathleen Fisher and others of the National Cattlemen’s Beef Association for their help in obtaining information supporting this analysis.

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Transferring Knowledge of Dairy Sustainability Issues Through a Multi-layered Interactive “Virtual Farm” Website

Proceedings Home W2W Home w2w17 logo

Purpose

The goal of the Sustainable Dairy “Virtual Farm” website is to disseminate research-based information to diverse audiences from one platform. This is done with layers of information starting with the mSustainable dairy logoost basic then drilling down to peer-reviewed publications, data from life-cycle assessment studies and models related to the topics. The Virtual Farm focuses on decision makers and stakeholders including consumers, producers, policymakers, scientists and students who are interested in milk production on modern dairy farms. The top entry level of the site navigates through agricultural topics of interest to the general public. Producers can navigate to a middle level to learn about practices and how they might help them continue to produce milk for consumers responsibly in a changing climate while maintaining profitability. Featured beneficial (best) management practices (BMPs) reflect options related to dairy sustainability, climate change, greenhouse gas emissions, and milk production. Researchers can navigate directly to deeper levels to publications, tools, models, and scientific data. The website is designed to encourage users to dig deeper and discover more detailed information as their interest develops related to sustainable dairies and the environment.

What did we do?

As part of a USDA Dairy Coordinated Agricultural Project addressing climate change issues in the Great Lakes region, this online platform was developed to house various products of the transdisciplinary project in an accessible learning site. The Virtual Farm provides information about issues surrounding milk production, sustainability, and farm-related greenhouse gases. The web interface features a user-friendly, visually-appealing interactive “virtual farm” that explains these issues starting at a less-technical level, while also leading to much deeper research into each area. The idea behind this was to engage a general audience, then encourage them to dig deeper into the website for more technical information via Extension offerings.

The main landing page shows two sizes of dairy farms: 150 and 1,500-cows. The primary concept was to replace an all-day tour of multiple real dairy farms by combining their features into one ‘virtual farm’. For example, the virtual farm can describe and demonstrate the impact of various manure processing technologies. Users can explore the layout image, hover over labeled features for a brief description, and click to learn more about five main categories: crops and soils, manure management, milk production, herd management, and feed management. Each category page contains a narrative overview with illustrations and links to more detailed information.

What have we learned?

The primary benefit is that participants can learn about different practices, at their level of interest, all in one place. The virtual farm incorporates a broad theme of sustainability targeted at farming operations in the northeastern Great Lakes region of the USA.

The project has included regional differences in dairy farming practices and some important reasons for this such as environmental concerns (focus on N and/or P management in different watersheds) and long-term climate projections. Dairy industry supporters find value in having a one-stop repository of information on overall sustainability topics rather than having to visit various organizations’ sites.

Future Plans

We plan to continue to develop the website by adding relevant information, keeping information up to date, developing the platform for related topic areas and adding curriculums for school students.

Corresponding author, title, and affiliation

Daniel Hofstetter, Extension-Research Assistant, Penn State University (PSU)

Corresponding author email

dwh5212@psu.edu

Other authors

Eileen Fabian-Wheeler, Professor, PSU; Rebecca Larson, Assistant Professor, University of Wisconsin (UW); Horacio Aguirre-Villegas, Assistant Scientist, UW; Carolyn Betz, Project Manager, UW; Matt Ruark, Associate Professor, UW

Additional information

Visit the following link for more information about the Sustainable Dairy CAP Project:

http://www.sustainabledairy.org

Acknowledgements

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2013-68002-20525. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

The North American Partnership for Phosphorus Sustainability: Creating a Circular P Economy as Part of a Sustainable Food System


Purpose           

To promote and foster the implementation of sustainable P solutions in both the private and public sectors

People standing in the formation of a 'P'What did we do? 

Recently, a team of Phosphorus researchers initiated the North American Partnership for Phosphorus Sustainability (NAPPS) with seed funding from Arizona State University. The goal of North American Partnership for Phosphorus Sustainability (NAPPS) is to actively engage stakeholders (e.g. corporations, national and local policy makers, planners and officials, representatives of agriculture, industry) to promote and foster the implementation of sustainable P solutions in both the private and public sectors. NAPPS seeks to engage partners in identifying key bottlenecks and strategies for decision-making, policy, and implementation of P efficiency and recycling technologies.

What have we learned? 

Phosphorus is necessary for life, and is essential for agricultural production, and so for food security. The growing world population, changing diets of humans to more meat and dairy and growing use of phosphate additives, and biomass production for energy or industrial uses result in an increasing need for phosphorus input, and the world is today heavily dependent on non-renewable, finite phosphate rock reserves that which are concentrated in a small number of countries, posing geopolitical vulnerability. These trends lead to the depletion of phosphate rock resources, pressure on and instability in phosphate prices, decreasing quality and increasing contaminant loads of remaining reserves, and unstable, insecure P supply for regions without local rock resources, especially in the developing world. At the same time, excess P is lost from the food system at multiple points. The result is eutrophication of freshwater and coastal ecosystems – lo ss of the amenity value of lakes and rivers as well as toxic algal blooms and impacts on fisheries.

Phosphorus stewardship is therefore essential, and we must use P more efficiently in the agri-food system, and actively develop phosphorus reuse and recycling technologies and practices. At the same time, the issue of contaminants, both in phosphate rock and in recycled phosphates must be addressed, as well as the need to reduce phosphate inputs to surface waters where these are problematic. We can reduce the use of mined P by producing and applying fertilizer from recycled sources. By using improved practices and smarter crops, we can reduce the demand for P fertilizer and reduce the runoff to surface water bodies. By reducing and re-using food waste and eating food with lower P footprints we can lower our phosphorus consumption and demand. Collectively, these will also lessen the impacts of P runoff on precious water resources.

Future Plans 

NAPPS activities and stakeholder recruitment will be organized around four main sectors: P Recycling; P Efficiency in Food Production; BioEnergy and Food Choice; and Water Quality. Projects and activities will be decided by the Board of Directors, but may include:

1. Develop a common vision for creating a sustainable P cycle in North America

2. Identifying and helping businesses and other organizations respond to opportunities offered by challenges in P management and emerging research in P sustainability

3. Building networks between different interest groups and sectors related to phosphorus management and recycling

4. Evaluating new P efficiency and recycling technologies, including feasibility, availability of suppliers, inventory of existing technologies and companies, cost/benefit analysis, and life cycle analyses

5. Fostering implementation of new technologies by improving the efficiency of business value chains

6. Assessing and facilitating regulatory development pertaining to phosphorus management, including waste, environmental, discharge, and agriculture to improve P sustainability

7. Representing North American phosphorus managers and innovators in international meetings and initiatives

8. Preparing funding RFPs for demonstration projects and integration and dissemination of new technologies and concepts

Authors

Helen Ivy Rowe, Assistant Research Professor, School of LIfe Sciences, Arizona State University hirowe@asu.edu

James J. Elser, Regents Professor, School of LIfe Sciences, Arizona State University

Additional information                

http://sustainablep.asu.edu

Acknowledgements      

We thank Arizona State University for providing funds to launch this initiative.

 

Logo for Sustainable Phosphorus Initiative

The Sustainable Phosphorus Initiative - farm, food, fertilizer

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Making Dairy Manure More Valuable Than Milk

Can Anaerobic Digestion Lead to Additional Revenue Streams On a Dairy Farm?

CowPots are the invention of necessity. Brothers Matt and Ben Freund are second generation dairy farmers in the northwest hills of Connecticut. In dairy farming, the most challenging job is to manage the nutrient stream in an environmentally sound manner. In 1997 the brothers installed a methane digester to heat the manure coming out of a cold barn to be able to separate the liquid year round for field application with a drag line system. This made the farm much more efficient and timely while at the same time reducing soil compaction and improving crop yields. The solids which are composted were first used for bedding the herd and are now used to mold the CowPots, whose value far exceeded bedding value. Farmers and gardeners have always considered cow manure a wholesome organic soil amendment for their crops. The challenge was to find a new and better way to get manure to these soils while maintaining value to consumers.

CowPots are a patented, environmentally friendly product made from the nutrient rich manure and are a vehicle for exporting the farm’s excess nutrients. Through production and sales of CowPots the Freunds have reduced the nutrient load on their farm by approximately 11% and have added a significant 2nd income to the dairy operation.

Examples of CowPots    Root Example

Emblems of sound stewardship, CowPots are the ideal product for farmers, growers, gardeners — and for the planet.

What did we do?

The idea for using manure solids to fashion a horticultural pot occurred in the mid 1990’s. The dairy farmer’s wife, Theresa owns a seasonal farm market and garden center adjacent to the dairy farm. Matt noticed that when his wife was tilling the soil each spring, the supposed biodegradable pots were still fully intact.

Confronting stricter regulations on nutrient management through state and federal rules, he needed an alternative to the status quo of storing and spreading manure on their 260+ cow dairy farm. Comparing the fibers found in the peat pots to the fibers of the manure solids, he brought his idea to the kitchen. In Matt’s spare time he began forming, pressing, pasting and molding manure fibers into pots (initially working in the greenhouse and using equipment from his wife’s kitchen and not wanting to get divorced, he moved outside to the farm shop). Nearly a decade was spent experimenting through trial and error.

In the mid 2000’s a production prototype was constructed in one bay of the farm shop where 4” pots were formed and placed by hand onto a drying oven. In 2006, CowPots worked with a local company to shrink wrap stacks of pots and sold them for resale at local garden centers and hardware stores in the tri-state area. That same year Freunds received an SBIR grant to further investigate the horticultural benefits of growing in CowPots. Concurrently, UConn and Cornell University conducted trials in greenhouse settings. In 2009, a standalone manufacturing facility was built and the lineup of sizes offered grew. Today the Freunds manufacture 12 size pots for horticultural uses as well as custom shapes for customers.

What have we learned?

Freunds have learned not all dairy fibers are the same. There are numerous activities on any farm which affect the characteristics of this material. Changes in feed, added minerals, digester upsets,composting temperatures, duration in the in-vessel composer and pasturing the herd have been the most influential on Freund’s farm.

Matt Freund with Product   CowPots

Future Plans

The Freunds had many goals one of which was not to have CowPots dictate the management of the dairy. Every bucket of manure fiber needs to be tested before it is used for production of CowPots. The equipment is adjusted in response to any changes.

Another goal was to design a production facility with no waste stream. Dry matter of the fiber is very important to achieve this goal. By having nothing but water vapor and finished product exiting the facility, permitting becomes much less difficult and our footprint becomes much smaller.

The CowPots manufacturing facility is fast approaching their production capacity with shifts that run 24/6. New automation in the packaging system will be installed in the coming months for a total of three robots in the facility. Currently, Freunds are putting together an expansion plan to include an additional production line. They are also working with a company in a similar business to look for synergies. Freunds are investigating other waste streams which could be blended with CowPots products to make the end product even better and at a reduced cost. Recently an engineer came on board to identify production inefficiencies within the manufacturing system to help reduce costs. As the market builds, Freunds will be looking for partners to work with in different areas of the country.

Author

Matt Freund, Owner/Inventor matt@cowpots.com

Additional information

http://cowpots.com/

https://www.youtube.com/user/CowPots

Acknowledgements

Northeast SARE, SBIR, USDA NRCS and Rural Development, CT Dept of Agriculture and CT Dept of Energy and Environmental Protection

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.