The Michigan EnviroImpact Tool: A Supporting Tool to Help Farmers in Forecasting Manure Nutrient Runoff Risk

The purpose of the MI EnviroImpact Tool is to provide farmers with a daily runoff risk decision support tool that can aid in effectively planning short-term manure and nutrient application. This not only helps keep nutrients on the field and potentially saves money, but it also helps to protect our waterways in Michigan.

Lifecycle of manure nutrients
Figure 1. Livestock operations are a readily available source of manure nutrients. With effective nutrient application, farmers might be able to reduce the use of commercial fertilizers and save money.
With the MI EnviroImpact tool, farmers are able to plan for effective short-term manure application.
Figure 2. With the MI EnviroImpact tool, farmers are able to plan for effective short-term manure application.

What did we do?

Farmer interest groups were pulled together for initial piloting and testing of the MI EnviroImpact tool to hear what worked and what needed improvement. The goal was to make this a very user-friendly tool that everyone could use. Additionally, educational and outreach materials were created (factsheet, postcard, YouTube videos, and presentations) to help get the word out about this decision support tool. The ultimate goal of the MI EnviroImpact tool is for use as a decision support tool for short-term manure and nutrient application. The tool derives the runoff risk forecast from real-time precipitation and temperature forecasts. This information is then combined with snow melt, soil moisture and temperature, and other landscape characteristics  to forecast times when the risk of runoff will be higher. The MI EnviroImpact tool is applicable in all seasons and has a winter mode for times when the average daily snow depth is greater than 1 inch or the 3-day average soil temperature (top 2 inches) is below freezing.

The MI EnviroImpact tool displaying both winter and non-winter modes of daily runoff risk.
Figure 3. The MI EnviroImpact tool displaying both winter and non-winter modes of daily runoff risk.

What did we learn?

Through our work with the MI EnviroImpact Tool and those that helped to develop this tool, we were able to spread awareness of this user-friendly tool, so that more farmers would be likely to use it to help in nutrient application planning. Furthermore, those outside of the farming community have been very encouraged to see that agriculture is continuing to take steps in being environmentally friendly. Additionally, others have viewed this tool as a resource outside of farmers, showing that the MI EnviroImpact Tool has broader implications than just agriculture.

Future Plans

Future plans include continuing education about the MI EnviroImpact Tool as well as continued distribution of educational materials to help spread awareness of the tool itself.

Additional Information

Those who would like to learn more about the MI EnviroImpact Tool can visit the following links:

Acknowledgements

This project was prepared by MSU under award NA14OAR4170070 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce through the Regents of the University of Michigan. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, the Department of Commerce, or the Regents of the University of Michigan.

MSU is an affirmative-action, equal-opportunity employer, committed to achieving excellence through a diverse workforce and inclusive culture that encourages all people to reach their full potential. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, gender identity, religion, age, height, weight, disability, political beliefs, sexual orientation, marital status, family status or veteran status. Issued in furtherance of MSU Extension work, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Jeff Dwyer, Director, MSU Extension, East Lansing, MI 48824. This information is for educational purposes only. Reference to commercial products or trade names does not imply endorsement by MSU Extension or bias against those not mentioned.

Partners and funding sources involved in supporting, developing, and implementing the MI EnviroImpact tool.
Figure 4. Partners and funding sources involved in supporting, developing, and implementing the MI EnviroImpact tool.

Project Collaborators:

Heather A. Triezenberg, Ph.D.
Extension Specialist and Program Leader, Michigan Sea Grant
Michigan State University Extension
Community, Food and Environment Institute
Fisheries and Wildlife Department
Meaghan Gass
Sea Grant Extension Educator
Michigan State University Extension

Jason Piwarski
GIS Specialist
Michigan State University
Institute of Water Research

Dustin Goering
Senior Hydrologist
North Central River Forecast Center
NOAA National Weather Service

Cindy Hudson
Communications Manager, Michigan Sea Grant
Community, Food & Environment Institute
Michigan State University Extension

Jeremiah Asher
Assistant Director
Institute of Water Research
Michigan State University

Kraig Ehm
Multimedia Producer
ANR Communications and Marketing
College of Agriculture and Natural Resources
Michigan State University

Luke E. Reese
PhD, Associate Professor
Biosystems and Agricultural Engineering
Michigan State University

Marilyn L. Thelen
Associate Director, Agriculture and Agribusiness Institute
Michigan State University Extension

Todd Marsee
Senior Graphic Designer
Michigan Sea Grant
University of Michigan

Mindy Tape
Manager
ANR Communications & Marketing
Michigan State University Extension

 

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.

Regional Runoff Risk Tools for Nutrient Reduction in Great Lakes States

One method to reduce the impacts of excess nutrients leaving agricultural fields and degrading water quality across the Nation is to ensure nutrients are not applied right before a runoff event could occur.  Generally nutrient management approaches, including the 4-Rs (“right” timing, rate, placement, and source), include some discussion about the “right time” for nutrient applications, however that information is static guidance usually centered on the timing of crop needs.  What has been missing, and what will be discussed in this talk, will be the development and introduction to runoff risk decision support tools focused on providing farmers and producers real-time guidance on when to not apply nutrients in the next week to 10 days due to the risk of runoff capable of transporting those nutrients off their fields.  The voluntary adoption and use of runoff risk in short-term field management decisions could provide both environmental and economic benefits.

In response to the need for real-time nutrient application guidance and a request from states in the Great Lakes region, the National Weather Service (NWS) North Central River Forecast Center (NCRFC) has helped develop these runoff risk tools in collaboration with multiple state agencies and universities and with support from the Great Lakes Restoration Initiative (GLRI).  There are currently four active runoff risk tools in the Great Lakes region: Michigan, Minnesota, Ohio, and Wisconsin.  It is possible to develop similar tools for Illinois, Indiana, and New York if willing state partners are identified.  

What did we do?

Studies have shown that a few large runoff events per year contribute a majority of the annual load leaving fields.  In addition applications generally occur during the riskiest times of year for runoff (fall through spring) when fields experience the least vegetative cover and soils are vulnerable.  Knowing this information, real-time NWS weather and hydrologic models were evaluated to identify conditions that correlated with runoff observed at edge-of-field (EOF) locations.  The runoff risk algorithm identifies daily runoff events and stratifies the events by magnitude respective to each grid cell’s historical behavior.  The events are then classified into risk categories for the farmers and producers. In general, high risk events are larger magnitude events that don’t happen as often and also have a higher accuracy rate.  On the other end, low risk events are smaller magnitude events that have a higher chance of being a false alarm yet are also less likely to be associated with significant nutrient loss.

NWS models are run twice daily and simulate soil temperature, soil moisture, runoff, and snowpack conditions continuously.  The runoff risk algorithm is applied against the model output to produce runoff risk guidance which is sent to the state partners.  Each state has a working group and a lead agency or organization that manages the effort to produce and maintain the runoff risk websites as well as promote the tools and educate the users on how to interpret and use the guidance.  

What have we learned?

At this point there are four regional runoff risk tools available.  Response has been positive from both state agencies and when farming groups are asked about the runoff risk concept during post-presentation surveys and small focus groups.  There is a strong desire from the farming community to make the best decision during stressful times of the year when farming schedules and the weather are often in conflict.  

At this point, it is universally accepted among the runoff risk collaborators that there is a need to provide free, easily obtainable forecast guidance to the farming community so they can make the best nutrient application decisions for their operations and the environment.

Runoff risk tools are strictly for decision support and not meant to be a regulatory tool in nature.  This is due to the limitations in hydrologic models, weather forecasting, spatial scale issues, and that the tools have no way of incorporating farmer specific practices into the risk calculations.  Although model improvements will occur in the future, ensuring users understand the limitations but also the benefits they can provide are important components in the States’ outreach and education functions.  

Future Plans

Based on feedback from the states employing runoff tools, there is a second round of enhancement planned for the runoff risk algorithm in the summer of 2019.  Other improvements from the states’ perspective deal with updating webpages and building on and enhancing push notification capabilities such as text message and email alerts.

The next major step forward begins in spring 2019 with the start of version 3 runoff risk.  This 2-year development will transition runoff risk guidance from the current model over to the new NWS National Water Model (NWM).  The NWM framework will allow finer resolution guidance (1km or smaller) for numerous models runs per day all with full operational support.  Moving to the NWM also allows continuous improvement and future collaboration opportunities with universities to improve the underlying WRF-Hydro model as well as runoff risk and other derived decision support guidance.

Authors

Dustin Goering, Senior Hydrologist, North Central River Forecast Center, National Weather Service
Andrea Thorstensen, Hydrologist, North Central River Forecast Center, National Weather Service

Corresponding Author email
dustin.goering@noaa.gov

Additional Information

For further information on runoff risk background please visit this page: https://vlab.ncep.noaa.gov/web/noaa-runoff-risk/runoff-risk-background  (Still under construction)

 

To visit the state tools see the following links:

    

Michigan  

Minnesota 

Ohio  

Wisconsin  

Acknowledgements

There are many individuals across a wide spectrum of agencies, industry, and universities that have been instrumental in the development of runoff risk to this point.

Support for the development of runoff risk across the Great Lakes and the upcoming version 3 runoff risk from the National Water Model has been provided by multi-year grants from the Great Lakes Restoration Initiative.

 

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.

Impact of Biochar on Nitrogen Cycling: Impact of Oxidation and Application to Filter Strips

Biochar has been shown to have the ability to affect nitrogen cycling in soils. In this study, we investigated the impact of adding biochar to filter strip plots to understand the impact on nitrogen leaching, particularly in the form of nitrate. In addition, we examined additions of biochar to soil columns to determine the mechanism for reductions in leaching and to assess the impacts to nitrous oxide emissions.  

What did we do?

grass
Figure 1: Filter strip plots with vegetation receiving silage runoff with collection of surface and subsurface water samples

We conducted three studies to investigate the impact of biochar to nitrogen cycling. First, we developed filter strip plots where we added biochar to the soil matrix in three of six plots. We then applied bunker silage storage runoff ( containing nitrogen) to the plots and determined the forms and quantities of nitrogen leaching through the soil profile. Second, we oxidized biochar and completed sorption studies to determine if oxidation of biochar plays a role in nitrate sorption. Third, we conducted soil column experiments to determine if biochar impacted mineralization rates, nitrification and/or denitrification in soil systems when synthetic wastewater containing nitrogen was applied.

What have we learned?

We have found that biochar does impact nitrogen leaching. When added to filter strip plots, it reduced total nitrogen and nitrate leaching. In addition, oxidation of biochar was found to have an impact to nitrate sorption. Finally, when biochar is applied to soil columns it not only reduces nitrate leaching but also reduces nitrous oxide emissions.

Future plans

We plan to further investigate biochar applications to reduce nitrogen losses to the environment.

Authors

Rebecca A. Larson, Associate Professor, Biological Systems Engineering, University of Wisconsin-Madison, rebecca.larson@wisc.edu

Joseph Sanford, Biological Systems Engineering, University of Wisconsin-Madison

Acknowledgements

This material is based on work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-67019-23573 and 2017-67003-26055.

 

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.

Nutrient Leaching Under Manure Staging Piles

For many livestock producers, manure storage capacity is limited.  Severe weather events can intensify the manure storage capacity limitations.  One option available to producers is to haul manure to the field and place it in manure staging areas.  This can reduce the manure storage capacity needed at the livestock facility, and reduce manure hauling time in the spring.  Hauling of manure to manure staging areas is typically done when convenient, with little thought about the effect of timing and nutrient loss.  This study examined nutrient loss from manure staging piles placed in November, January, and March over a course of five years.

What Did We Do?

This study compared manure staging areas with manure placed at three different times (November, January, and March) and two different bedding materials (straw, no straw).  

For each placement event (November, January, March) manure from the tie stall barn (straw bedding) and the butterfly sheds (sand bedding) at the Utah State University Caine Dairy was hauled to Cache Junction, UT and placed in manure staging piles.  Composite manure samples were collected from each pile (manure type) at the time of placement, and at removal each year (in the fall after crop harvest) for five years. Manure samples were analyzed for ammonium-nitrogen using Method 12-107-04-1-F on a Lachat Flow Injection Analysis (FIA) analyzer and total N using an Elementar combustion analyzer.  Leachate was collected biweekly by means of zero-tension lysimeters installed under the manure staging areas and analyzed for ammonium-nitrogen using Method 10-107-06-2-O and nitrate-nitrogen using Method 10-107-04-1-R on a Lachat FIA analyzer. Soil samples were taken to a depth of 90 cm and analyzed for nitrate-nitrogen using Method 12-107-04-1-F on a Lachat FIA analyzer.

What Have We Learned?

Figure 1. Total N (mg) in leachate/lysimeter under manure staging piles.
Figure 1. Total N (mg) in leachate/lysimeter under manure staging piles.

Significant leachate was produced under the manure staging piles placed during the winter months, with the manure with no straw (sand bedding) producing more leachate than the manure with straw (straw bedding).  Manure piles placed in November produced less leachate and lost less total N than those placed in January and March (Figure 1). Due to Utah’s dry climate, this is most likely due to drying of the manure in the late fall months, which enabled the manure to absorb more moisture during the winter months. Manure piles placed in January produced the most leachate and exhibited more total N loss (Figure 2).

Difference in manure Total N% from time of placement to removal for land application.
Figure 2.  Difference in manure Total N% from time of placement to removal for land application.

The snow and snow melt most likely contributed to the large amount of leachate and nitrogen loss observed under the January piles.

Future Plans

The results of this study indicate that straw bedding helps retain the nitrogen in the manure and reduce nitrogen loss from manure placed in manure staging piles.  In addition, in Utah’s dry climate, the timing of manure staging pile placement does affect nutrient loss with placement in late November minimizing nutrient leaching.  This information will be presented to producers, NRCS, DWQ, and other ag professionals.

Authors

Rhonda Miller, Ph.D.; Agricultural Systems Technology and Education Dept.; Utah State University, rhonda.miller@usu.edu

Jennifer Long; Agricultural Systems Technology and Education Dept.; Utah State University

Additional Information

Website:  http://agwastemanagement.usu.edu

Acknowledgements

The authors gratefully acknowledge support from Utah State University Experiment Station.

 

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2019. Title of presentation. Waste to Worth. Minneapolis, MN. April 22-26, 2019. URL of this page. Accessed on: today’s date.

Manure Management Technology Selection Guidance

Proceedings Home W2W Home w2w17 logo

Purpose

Manure is an inevitable by-product of livestock production. Traditionally, manure has been land applied for the nutrient value in crop production and improved soil quality.With livestock operations getting larger and, in many cases, concentrating in certain areas of the country, it is becoming more difficult to balance manure applications to plant uptake needs. In many places, this imbalance has led to over-application of nutrients with increased potential for surface water, ground water and air quality impairments. No two livestock operations are identical and manure management technologies are generally quite expensive, so it is important to choose the right technology for a specific livestock operation. Information is provided to assist planners and landowners in selecting the right technology to appropriately address the associated manure management concerns.

What did we do?

As with developing a good conservation plan, knowledge of manure management technologies can help landowners and operators best address resource concerns related to animal manure management. There are so many things to consider when looking at selecting various manure treatment technologies to make sure that it will function properly within an operation. From a technology standpoint, users must understand the different applications related to physical, chemical, and biological unit processes which can greatly assist an operator in choosing the most appropriate technology. By having a good understanding of the advantages and disadvantages of these technologies, better decisions can be made to address the manure-related resource concerns and help landowners:

• Install conservation practices to address and avoid soil erosion, water and air quality issues.

• In the use of innovative technologies that will reduce excess manure volume and nutrients and provide value-added products.

• In the use of cover crops and rotational cropping systems to uptake nutrients at a rate more closely related to those from applied animal manures.

• In the use of local manure to provide nutrients for locally grown crops and, when possible, discourage the importation of externally produced feed products.

• When excess manure can no longer be applied to local land, to select options that make feasible the transport of manure nutrients to regions where nutrients are needed.

• Better understand the benefits and limitations of the various manure management technologies.

Picture of holding tank

Complete-Mix Anaerobic Digester – option to reduce odors and pathogens; potential energy production

Picture of mechanical equipment

Gasification (pyrolysis) system – for reduced odors; pathogen destruction; volume reduction; potential energy production.

Picture of field

Windrow composting – reduce pathogens; volume reduction

Picture of Flottweg separation technology

Centrifuge separation system – multiple material streams; potential nutrient
partitioning.

What have we learned?

• There are several options for addressing manure distribution and application management issues. There is no silver bullet.

• Each livestock operation will need to be evaluated separately, because there is no single alternative which will address all manure management issues and concerns.

• Option selections are dependent on a number of factors such as: landowner objectives, manure consistency, land availability, nutrient loads, and available markets.

• Several alternatives may need to be combined to meet the desired outcome.

• Soil erosion, water and air quality concerns also need to be addressed when dealing with manure management issues.

• Most options require significant financial investment.

Future Plans

Work with technology providers and others to further evaluate technologies and update information as necessary. Incorporate findings into NRCS handbooks and fact sheets for use by staff and landowners in selecting the best technology for particular livestock operations.

Corresponding author, title, and affiliation

Jeffrey P. Porter, P.E.; National Animal Manure and Nutrient Management Team Leader USDA-Natural Resources Conservation Service

Corresponding author email

jeffrey.porter@gnb.usda.gov

Other authors

Darren Hickman, P.E., National Geospatial Center of Excellence Director USDA-Natural Resources Conservation Service; John Davis, National Nutrient Management Specialist USDA-Natural Resources Conservation Service, retired

Additional information

References

USDA-NRCS Handbooks – Title 210, Part 651 – Agricultural Waste Management Field Handbook

USDA-NRCS Handbooks – Title 210, Part 637 – Environmental Engineering, Chapter 4 – Solid-liquid Separation Alternatives for Manure Handling and Treatment (soon to be published)

Webinars

Evaluation of Manure Management Systems – http://www.conservationwebinars.net/webinars/evaluation-of-manure-management-systems/?searchterm=animal waste

Use of Solid-Liquid Separation Alternatives for Manure Handling and Treatment – http://www.conservationwebinars.net/webinars/use-of-solid-liquid-separation-alternatives-for-manure-handling-and-treatment/?searchterm=animal waste

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

EPA’s Nutrient Recycling Challenge


Proceedings Home W2W Home w2w17 logo

Purpose 

Come to this session to learn about the Nutrient Recycling Challenge and meet some of the involved partners and experts, as well as some innovators who are competing to develop nutrient recovery technologies that meet the needs of pork and dairy farmers. This session will begin with an overview of the challenge. Next, innovators will provide snapshot presentations about the technology ideas they are working on, followed by live feedback/Q&A sessions on each technology where we can harness the buzzing brainpower at Waste to Worth. Finally, we will move into a “workshop” designed to support innovators participating in the Nutrient Recycling Challenge as they refine their designs before they build prototypes.

What did we do?

Background on the Nutrient Recycling Challenge

At Waste to Worth 2015, the U.S. Environmental Protection Agency (EPA) hosted a brainstorm session about developing technologies that livestock farmers want to help manage manure nutrients. That session sowed the seeds for the Nutrient Recycling Challenge—a global competition to find affordable and effective nutrient recovery technologies that create valuable products farmers can use, transport, or sell to where nutrients are in demand. Pork and dairy producers, USDA, and environmental and scientific experts saw the tremendous opportunity to generate environmental and economic benefits, and partnered with EPA to launch the challenge in November 2015 (www.nutrientrecyclingchallenge.org).

What have we learned? 

There is a tremendous opportunity to generate environmental and economic benefits from manure by-products, but further innovation is needed to develop more effective and affordable technologies that can extract nutrients and create products that farmers can use, transport, or sell more easily to where nutrients are in demand.

In the Nutrient Recycling Challenge, innovators have proposed a range of technology systems to recover nitrogen and phosphorus from dairy and swine manure, including physical, chemical, biological, and thermal treatment systems. Some such systems may also be compatible with manure-to-energy technologies, such as anaerobic digesters. Farms of all sizes are interested in nutrient recovery, and there is demand for diverse types of technologies due to a diversity in end users. To improve the adoptability of nutrient recovery systems, it is critical that innovators are mindful of the affordability of technologies, and work to lower capital and operations and maintenance costs, and improve the potential for returns on investment. A key factor for offsetting the costs of a technology and improving its marketability will be in its ability to generate valuable nutrient-containing products that are competitive in the market.

Future Plans 

The challenge has four phases, in which innovators are turning concepts into designs, and eventually to pilot these working technologies on livestock farms. Thirty-four innovator teams whose concepts were selected from Phase I are refining technology designs in Phase II.  Design prototypes will be built in Phase III. This workshop is designed to help innovators maximize their potential for developing nutrient recovery technologies that meet farmer needs.

Corresponding author, title, and affiliation 

Joseph Ziobro, Physical Scientist, U.S. Environmental Protection Agency; Hema Subramanian, Environmental Protection Specialist, U.S. Environmental Protection Agency

Corresponding author email 

ziobro.joseph@epa.gov; subramanian.hema@epa.gov

Session Agenda

  1. Overview of the Nutrient Recycling Challenge, Hema Subramanian and Joseph Ziobro of EPA
  2. Nutrient Recycling Challenge Partner Introductions, Nutrient Recycling Challenge Partners (including National Milk Producers Federation, Newtrient, Smithfield Foods, U.S. Department of Agriculture Agricultural Research Service and Natural Resources Conservation Service, U.S. Department of Energy, and Water Environment & Reuse Foundation)
  3. Showcase of Innovators’ Technology Ideas
    • Decanter Centrifuge and Struvite Recovery for Manure Nutrient Management, Hiroko Yoshida
    • Manure Solids Separation BioFertilizer Produccion Drinking Water Efluente, Aicardo Roa Espinosa
    • Nutrient Recovery from Anaerobic Digestates, Rakesh Govind
    • Organic Waste Digestion and Nutrient Recycling, Steven Dvorak
    • Manure Treatment with the Black Solder Fly, Simon Gregg
  4. Nutrient Recycling Challenge Workshop for Innovators
    • Developing technologies: From concept to pilot (to full-scale), Matias Vanotti
    • Waste Systems Overview for Dairy and Swine and Innovative Technologies: What Steps Should be Taken (Lessons Learned), Jeff Porter

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Digester Effluent’s Agronomic and Odor Emission Potential: A Swine Case Study


Proceedings Home | W2W Home w2w17 logo

Purpose

This on-farm study looked at the full-scale treatment effects of anaerobic digestion on the composition of manure effluent from an agronomic and air quality perspective.  The goal was to improve our understanding of the role that anaerobic digestion may play in managing manure as a fertilizer and in reducing odor and other air emissions.

What did we do?

Manure slurry and digester effluent samples were collected from a swine production operation in eastern Nebraska that utilizes a complete-mix anaerobic digester to treat the manure and produce biogas for generating electricity.  Samples were collected from three sites in the manure stream (below-barn pit, digester outlet, and holding pond) over a 15-month period to observe changes in manure and head-space gas composition as a result of manure treatment and over time.  Manure analyses included common agronomic measures (N-P-K, pH, micronutrients, etc.) and measures of biological decomposition potential (i.e. chemical oxygen demand, volatile solids content).  Gases released by manure samples (‘head-space air’) were analyzed for odor precursors (i.e. volatile fatty acids, aromatic compounds, and ammonia).

Swine production  operation in eastern Nebraska where manure slurry and digester effluent samples were collected.

The manure nutrient analyses were then used to determine nitrogen-based application rates for a later comparison of fertilizing dryland corn using i) undigested manure from deep pits; ii) digester effluent; iii) digested manure held in earthen storage; and iv) anhydrous ammonia (control).  Material for each treatment was knifed into duplicated test strips using commercial injection equipment.  Each strip was 30 feet wide (twelve 30″ rows) x 360 feet long for an area of 1/4 acre.  The yield for each strip was obtained at harvest using data from the combine’s yield monitoring system.

What have we learned?

A trend was observed for ammonia nitrogen (NH3-N) content of the digester effluent to be greater than in the raw manure [influent], but then NH3-N dropped substantially during subsequent storage in the earthen basin.  These observations are consistent with anticipated ammonia generation during digestion (as organic nitrogen is converted to aqueous ammonia ) followed by loss of ammonia to the atmosphere as the treated manure is stored in an open structure.  When considering effects on fertilizer value, the study provided supporting evidence that a digester has very little direct effect on total nitrogen content, but tends to increase NH3-N content.  Similar corn yields (averaging 156 to 163 Bu/Ac) were obtained for each treatment.   Our conclusion was that digesters increase the availability of nitrogen in manure for plant growth, which unfortunately may also increase losses of this valuable plant nutrient via ammonia volatilization.

Volatile solids (or total organic matter) and chemical oxygen demand (COD) contents in stored digester effluent showed considerable decreases from undigested manure in the below-barn pit.  Loss of volatile solids and COD as the manure moved through the digester and during storage in the basin is consistent with consumption of organic matter and production of methane and other biogases.  Another clear trend was for odorous compounds to decrease in concentration as the manure slurry moved through the digester and as the effluent was subsequently stored in the basin.  When the digester was operating as designed, chemical oxygen demand was reduced by an average of 45%, odorous volatile fatty acids were reduced by an average of 66%, and ammonia increased by an average of 58%.

Future Plans

None at this time

Corresponding author email

rstowell2@unl.edu

Other authors

Dan Miller, USDA-ARS and Crystal Powers, UNL

Additional information

Related research report (National Pork Board #08-259) at http://research.pork.org/Results/ResearchDetail.aspx?id=1578.

Acknowledgements

Funding for this work was provided by the National Pork Board (#08-259) and the Nebraska Environmental Trust. Appreciation acknowledged for in-kind efforts of the pork producer and owner of O’Lean Energy, LLC.

Evaluation of a Solid-Liquid Manure Separation Barn

Proceedings Home W2W Home w2w17 logo

Purpose

This paper documents an on-going evaluation of an existing, full-scale solid/liquid separator barn for the potential of improved manure nutrient conservation and management, water recycling, including cost and handling implications. The barn has V-shaped pit floor to drain liquid manure, and automated scrapers to collect solid manure frequently. The finishing barn was built to improve indoor air quality, and improve manure handling and land application of nutrients.

What did we do?

  1. Collected monthly manure samples (both solid and liquid manure samples) at the commercial barn starting in September, 2016. The collected samples were analyzed for important manure nutrients, pH, and moisture content.
  2. Monitored daily liquid manure production by measuring the water level fluctuation in the receiving pit, using a liquid pressure data logger (U20L-04, HOBO Water Level, Onset Computer Corporation, Bourne, MA). A new pressure gauge with two sensors was then added to allow simultaneous measurement of atmospheric pressure to improve accuracy.
  3. Monitored accumulation of solid manure, by measuring dimensions of the manure pile during each sampling event. A camera was purchased and installed at the storage shed to take hourly photos of the storage pile.
  4. Conducted filtration pilot tests using water and salty water and a bench-scale cross-flow treatment system, capable of various filtration options including reverse osmosis.
  5. Conducted settling/pre-treatment tests of the liquid manure samples, by storing liquid manure in individual jars and periodically characterizing settling of manure solids and duration needed before the high-pressure filtration.Figure 1. The V-shape pit with automated manure scraper and trough at center (Left), and gravity draining of liquid manure from the trough to the sump pit (Right).

What have we learned?

Battery-operated gauges were able to closely monitor the water level, liquid manure flow, and operation of the pump, and the dual-sensor gauge was much easier in data analysis and downloading. The daily liquid manure level fluctuated significantly during the first six months of monitoring, which could be due to differences in animal size and occurrence of barn washing. Solid manure samples collected in the current project had higher moisture contents than the four samples collected in 2014, meaning the solid/liquid separation barn was not as effective in separating solids and liquids as in 2014.  But, the settling tests suggest a settling basin could be designed to pre-treat the liquid manure stream before a water extraction process.

Figure 2. Daily liquid manure separated by the solid/liquid separation barn

Future Plan

A year’s worth of data will be collected, and manure nutrient flows of the solid and liquid portions will be quantified. The team will also characterize and compare the barn and management costs (relative to a typical deep-pit barn), practicality, and costs of the use of filtration and reverse osmosis. Will provide pork producers information on potential for the solid/liquid separation barn and filtration process to improve nutrient management, land application, and water conservation.

Corresponding author, title, and affiliation

Teng Lim, Associate Professor, Agricultural Systems Management, University of Missouri

limt@missouri.edu

Other authors

Joshua Brown, Graduate Research Assistant; and Joseph M. Zulovich, Assistant Professor; Agricultural Systems Management, University of Missouri.

Additional information

Teng Lim, limt@missouri.edu

Acknowledgements

The authors would like to thank the National Pork Board and University of Missouri Extension for financial support, and the farm management team for their help with the project.

Replacing Commercial Sidedress Nitrogen with Liquid Livestock Manure on Emerged Corn

waste to worth 2017 logoProceedings Home | W2W Home

Purpose

Livestock producers can more fully utilize the nutrients in livestock manure to reduce purchased fertilizer costs if they can apply manure when crops need the nutrients. Better capturing manure nutrients can reduce phosphorus and nitrogen losses into surface water bodies. To help decrease the incidences of harmful algae blooms in the Western Basin of Lake Erie, Ohio State University (OSU) Extension research has sought to develop an in-season window to apply manure to emerged corn. By incorporating livestock manure as a sidedress nitrogen fertilizer for corn, nutrients are less exposed to movement by water and a greater percent of the nitrogen is utilized by the growing corn crop.

Surveys of livestock farmers, who attended OSU Extension field days in western Ohio reveal approximately 49% of livestock manure is applied in the months of October, November, and December following crop harvest. Typically, there is no growing crop at that time of year to capture the available nitrogen in the manure. The surveys also reveal only 19% of manure is applied in the months of April, May and June. Ohio has about 2.5 billion gallons of liquid dairy manure and almost one billion gallons of liquid swine manure needing applied to farm fields each year.

What did we do?

Ohio State University conducted replicated small-plot research from 2012 to 2016 using swine and dairy manure as sidedress nitrogen sources compared to incorporated 28% Urea Ammonium Nitrate (UAN) on pre-emergent and post-emergent corn. The nitrogen in manure is primarily in two forms; ammonium and organic. Ammonium nitrogen is readily available to a growing crop. Organic nitrogen has to undergo a mineralization process for a percentage of the nitrogen to eventually be released in the ammonium form each crop season.

More than 45 on-farm plots with livestock producers were also completed over five seasons using field sized replicated plots. Liquid swine, dairy, and beef manure were applied to corn in the V2 to V4 stage of growth using a 5,250 gallon Balzer tanker and six-row Dietrich manure injection toolbar. The flotation tires on the tanker were replaced with rims and narrow tires allowing the tanker to follow the tractor down the rows of corn. In replicated plots, the liquid manures produced similar yields to commercial fertilizer when applied at similar nitrogen fertilizer amounts.

OSU Extension also conducted swine finishing manure drag hose plots with a pork producer where manure was incorporated into emerged corn at the V2 to V3 stage of growth and compared to incorporated 28%UAN. The manure application rate was approximately 6,500 gallons per acre using a seven-shank rotary injector toolbar. The drag hose was six inches in diameter and the pumping rate was 1,300 gallons per minute. The farmer planted the fields on a 45 degree angle to accommodate the drag hose manure application.

What have we learned?

Below are five years of liquid manure side-dress research on corn plots at the Northwest Station of the Ohio Agricultural Research and Development Center. In these research plots liquid swine and liquid dairy manure were used in pre-emergent and post-emergent plots and compared with incorporated 28%UAN. Manure was applied to the pre-emergent plots each season within three days of planting. Manure was applied to the post-emergent plots at the V3 stage of corn growth. The manure was applied to a depth of approximately five inches using a 1,250 gallon manure tanker with Dietrich manure injection sweeps and covering wheels.

For these plots, the swine finishing manure application rate was 5,000 gallons per acre to provide 200 pounds of available nitrogen. The dairy pond manure application rate was 13,500 gallons per acre (140 pounds of available nitrogen) plus 20 gallons of 28% UAN nitrogen applied just ahead of the manure for a total of 200 pounds of nitrogen. The 28%UAN treatments also received 200 pounds of nitrogen per acre each year.

Chart 1. OARDC manure side-dress plot results

2012-2016 OARDC Manure Sidedress Yields; bushels per acre

The long-range goal of Ohio State University Extension’s manure application research is to utilize a drag hose to incorporate liquid manure of any species into corn from the date of planting up to the V4 stage of growth. Three years of drag hose manure side-dress plots in Darke County indicate this manure application method has great potential. Applying manure to a growing crop can capture more of the manure nutrients than applying manure without a crop in the field.

Chart 2. Drag hose research yields on corn in Darke County, Ohio

Year

Swine manure

(bu/acre)

28%UAN (bu/acre)

2016

222

216

2015

154

121

2014

204

204

In addition to the three crop seasons of drag hose sidedress of corn in Darke County, we also have three years of drag hose damage research from the Ohio Agricultural Research and Development Center’s Northwest Station near Hoytville. Based on this research, we believe we can use a drag hose across emerged corn through the V3 stage without a loss of yield and probably through the V4 stage if early season conditions are drier than normal.

Chart 3. 2014-2016 OARDC drag hose damage yield losses in corn

Corn growth stage

Plant population

2014

Yield

bu/acre

2014

Plant population

2015

Yield

bu/acre

2015

Plant population

2016

Yield

bu/acre

2016

3-year

population

average

3-year

average

bu/acre

No drag hose

30,166

145.1

31,850

167.2

28,625

145.1

30,214

152.5

V1

29,660

154.3

31,750

166.1

28,625

149.5

30,012

155.4

V2

30,166

157.9

32,000

165.3

28,500

141.2

30,222

154.8

V3

28,933

153.9

31,375

172.3

29,250

144.4

29,853

156.9

V4

29,264

149.7

23,500

123.5

27,500

152.1

26,755

141.8

V5

15,366

109.8

——-

——

16,000

126.3

15,683*

118.0*

*Indicates only two years of data

Future Plans

Funds are being solicited to purchase 12-row drag hose manure incorporation toolbars to have available to livestock producers and commercial manure applicators to use in Ohio for the 2017 crop season and beyond. Thanks to donations from the Columbus Foundation, Ohio Farm Bureau, Dietrich Inc., Cooper Farms, Hord Livestock, Conservation Action Project, and Bazooka Inc. we have almost secured the funds to build two toolbars.

Corresponding author, title, and affiliation

Glen Arnold, Associate Professor & Field Specialist Manure Nutrient Management Application, The Ohio State University

Corresponding author email

Arnold.2@osu.edu

Other authors

Eric Richer, Sam Custer, Sarah Noggle, Jeff Stachler, Jason Hartschuh, Amanda Douridas

Additional information

Additional on-farm manure plot research results are available at www.agcrops.edu

YouTubes of OSU Extension manure application to emerged corn can be found at: https://www.youtube.com/channel/UC7jUsQNGM8fCHjbZUdT9pKw

Acknowledgements

Thanks to the Ohio Environmental Education Fund, Ohio Pork Producers Council, Ohio Dairy Research Fund, Ohio Corn Marketing Board, Ag Credit, Farm Credit Services, Ohio Soybean Council, the Ohio Farm Bureau, and the Conservation Tillage Conference for funding support.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2017. Title of presentation. Waste to Worth: Spreading Science and Solutions. Cary, NC. April 18-21, 2017. URL of this page. Accessed on: today’s date.

Resources on Manure and Soil Health

Manure has long been used as a crop fertilizer and soil amendment. Research has shown that manure application can positively impact infiltration rates, soil aggregation, water holding capacity, and crop yields.

While manure can be beneficial, overapplication is not. Too much manure in one place can lead to problems with salt buildup and excess nutrients which can lead to problems with water quality. As with most other inputs, manure is most valuable when it is managed to be in balance with plant needs.

What Is Soil Health?

The United Nations Food and Agriculture Organization (FAO) and the USDA Natural Resource Conservation Service both use the following as the definition of soil health developed by Pankhurst et al., 1997.

The continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans.

Resources On Land Application of Manure and Impacts on Soil Health

[Roundtable Series] Four roundtable webinars will focus on soil health testing, soil biology, soil erosion, and cover crops as they pertain to manure application. The weekly series runs from February 9-March 9, 2017. More…

[Article] Environmental Benefits of Manure Application

[Recorded webinars]

Each of the resources listed above includes links to research articles, extension publications, and more. The MaSH webinar also includes information in how to become involved in the learning network and to read or contribute to the project blog.

[Learning Network] The Soil Health Nexus is sponsored by the North Central Water Network but welcomes interested people from all regions

[Book] Sustainable Agriculture Research and Education (SARE) program “Building Soils for Better Crops 3rd Edition“. The sections most relevant to manure and soil health are linked below.

Animal Manures for Increasing Organic Matter and Supplying Nutrients