Carbon Footprint, Life Cycle Assessment and the Pork Industry

green stylized pig logoAnimal agriculture in the U.S. contributes approximately 3.5% of all man-made greenhouse gases (GHGs). If you look at pork production, it accounts for just 0.34% of all emissions. (Source: U.S. EPA Greenhouse Gas Inventory released April, 2015).

When you total up all the GHG emissions from a particular activity or process, it is called a carbon footprint. The procedure used to decide which GHG emissions are included in this total is a life-cycle assessment (LCA).

What Is a Carbon Footprint and How Is It Used?

A carbon footprint gives you a snapshot in time of the GHGs produced by the activity or process being evaluated. The number generated is especially useful for comparing different processes or different times.

Some reasons a farm, company, or industry would calculate a carbon footprint include:

  • Identifying “hot spots” in the system to prioritize areas where reductions can be made
  • Creating a baseline measure for comparing over time
  • Looking at “what-if” scenarios and comparing different options to see how each affects GHG emissions

What Goes Into a Life Cycle Analysis?

In order to be able to compare carbon footprints of different farms or different industries, the life-cycle analysis (LCA) needs to use the same parameters. To do this, many people rely upon standardized procedures such as those created by the International Organization for Standardization.

For the pork industry, the pork supply chain is broadly divided into eight stages:

  • feed production;
  • live animal production;
  • delivery to processor;
  • processing;
  • packaging;
  • distribution;
  • retail;
  • consumption/disposal.

The most important thing to remember is that if you compare two or more carbon footprints to each other, the LCA used needs to be the same. If you try to compare footprints generated using different LCAs, you will not get a true comparison.

For more information

Authors: Jill Heemstra, Nebraska Extension and Rick Fields, University of Arkansas

Acknowledgements

This information is part of the program “Integrated Resource Management Tool to Mitigate the Carbon Footprint of Swine Produced In the U.S.,” and is supported by Agriculture and Food Research Initiative Competitive Grant no. 2011-68002-30208 from the USDA National Institute of Food and Agriculture. Project website.