Mitigation of Odor and Pathogens from CAFOs with UV/TIO2: Exploring Cost Effectiveness

Reprinted, with permission, from the proceedings of: Mitigating Air Emissions From Animal Feeding Operations Conference.

This Technology is Applicable To:

Species: Swine, Poultry
Use Area: Animal Housing
Technology Category: Air Treatment (UV Photocatalysis)
Air Mitigated Pollutants: Volatile Organic Compounds, Odor, Pathogens

System Summary

Odor and target VOCs responsible for livestock odor are mitigated by UV-185 nm (‘deep’ UV) in presence of TiO2 as a catalyst into less odorous or odorless products such as CO2 and H2O. Percent removals from 80 to 99% were measured in lab-scale experiments involving simulated livestock VOCs/odorants and 1 sec irradiation with a low wattage 5.5 W lamp. Selected VOCs simulating livestock odor included p-cresol, sulfur-containing VOCs, and volatile fatty acids. Treatment cost of $0.25 per pig and continuous operation during growing cycle was estimated when the lab-scale results were extrapolated to typical ventilation rates and electricity cost at a swine finish operation in rural Iowa. The long-term goal is to develop cost-effective technology for the simultaneous treatment of odor and pathogens in livestock housing through logical progression of testing from lab-scale, through pilot-scale and finally at commercial scale. Such treatment would be applicable to both the inflow (for airborne pathogen control) and outflow air (for odor and pathogen control) at typical existing and new mechanically-ventilated barns.

Applicability and Mitigating Mechanism

  • Removal of VOCs and responsible for livestock odor in simulated barn air exhaust with UV light and advanced oxidation.
  • Research continues to move this technology from lab to commercial applications.
  • Potentially applicable to both the inflow (for airborne pathogen control) and outflow air (for odor and pathogen control) at typical existing and new mechanically-ventilated barns
  • On-demand, intermittent operation.

Limitations

  • This technology is still under development
  • Cost estimates are extrapolated from lab-scale experiments
  • Effects of particulate matter on UV treatment needs to be investigated
  • Effectiveness and costs associated long-term full-scale operation are not known at this time.

Cost

Treatment cost of $0.25 per pig and continuous operation during growing cycle was estimated when the lab-scale results were extrapolated to typical ventilation rates and electricity cost at a swine finish operation in rural Iowa. This cost could be further reduced for intermittent, on-demand operation. The capital costs would be mainly cost of ‘on-the-shelf’ deep’ UV lamps (currently at $90 for 10W lamp) and the cost of retrofitting of barn exhaust.

Authors

Jacek A. Koziel1,Xiuyan Yang1, Tim Cutler1, Shicheng Zhang1, Jeffrey Zimmerman1, Steven J. Hoff1, William Jenks1, Hans Van Leeuwen1, Yael Laor2, Uzi Ravid3, Robert Armon31Iowa State University, 2’Ya’ar Research Center, Agricultural Research Organization, Israel, 3Faculty of Civil and Environmental Engineering Technion, Haifa, Israel
Point of Contact:
Jacek Koziel, koziel@iastate.edu

The information provided here was developed for the conference Mitigating Air Emissions From Animal Feeding Operations Conference held in May 2008. To obtain updates, readers are encouraged to contact the author.